Download presentation
Presentation is loading. Please wait.
Published byPhilip Wilkinson Modified over 8 years ago
1
The Low Frequency Broadband Fourier Transform Microwave Spectroscopy of Hexafluoropropylene Oxide, CF 3 CFOCF 2 Lu Kang 1, Steven T. Shipman 2, Justin L. Neill 2, Alberto Lesarri 3, and Brooks H. Pate 2 1 : Department of Natural Sciences, Union College, KY 40906, USA 2 : Department of Chemistry, University of Virginia, VA 22904, USA 3 : Departmento de Quimica Fisica, Universidad de Valladolid, 47005 SPAIN
2
A challenge of FP-FTMW below 4 GHz Fabry-Perót cavity: Q ~ 10,000 Fresnel number: Solutions to the low frequency bands Increase a: Arunan, Emilsson, Gutowsky J. Chem. Phys. 101, 861, (1994) Decrease R: Etchison, Dewberry, Kerr, Cooke J. Mol. Spectrosc. 242, 39, (2007) Cylindrical resonator: TE 01 mode Storm, Dreizler, Consalvo, Grabow, Merke Rev. Sci. Instrum. 67(8), 2714, (1996)
3
Chirped-Pulse FTMW spectrometer (WF08) L P F SS –AMP AWG 7102 DG 535 CDCD ABAB 10 MHz Ref. TDS 2040 TDS 6124C LN-AMP SPST CP-FTMW is not a FP cavity based technology!
4
Hexafluoropropylene Oxide — HFPO Material sciences, :CF 2 Polymer chemistry Simple structure Dipole moments a-axis: 0.066 D b-axis: 0.15 D c-axis: 0.40 D
5
Ab initio calculations & experiments Density Functional Theory (DFT) calculation Gaussian 03: B3LYP/6-311++G(d,p) Sample: HFPO – SynQuest Lab. Inc. ~ 0.3% HFPO/Ne @ 1.5 atm CP-FTMW spectrometer: 2.0 – 8.5 GHz Average 10,000 shots in 45 min. SS-AMP(4W) / TWTA(300W) FP-FTMW spectrometer: 8.0 – 26 GHz
7
Analysis Spectra assignments: 5 HFPO isotopologues Plusquellic’s JB95 & Pickett SPFIT/SPCAT Watson’s A-reduction Hamiltonian Structural analysis Watson’s mass dependent r m (2) structure Kisiel’s STRFIT
8
DFT calc. [1], [2] [1][2] Main-HFPO 13 C 1 -HFPO 13 C 2 -HFPO 13 C 3 -HFPO 18 O-HFPO A 0 (MHz)2195.172217.04887(11)2216.87825(44)2214.65764(41)2216.82656(41)2187.44973(45) B 0 (MHz)1088.271101.48958(5)1097.80870(25)1101.55450(27)1096.82685(23)1090.69436(26) C 0 (MHz)925.60936.60131(5)933.89940(30)936.24432(30)933.18612(27)933.87117(35) Δ J (Hz)55.2254.98(18)54.6(19)55.0(19)54.5(16)54.5(24) Δ JK (Hz)103.71107.51(86)109.5(94)107.7(91)105.4(82)96.0(98) Δ K (Hz)-17.93-19.8(15)-20(10)-19(13)-11.3(99) [3] δ J (Hz)8.548.493(61)8.38(75)8.79(78)8.59 (62)8.3(10) δ K (Hz)-270.53-265.5(13)-260(19)-261(19)-251(16)-247(23) σ [4] (kHz) [4]---1.41.31.41.52.0 # of lines---36466697149 [ 1] [ 1] The calculation was done by B3LYP/6-311++G(d,p) method using Gaussian 03 program package. [2] [2] All calculated constants are derived from the optimized equilibrium molecular structure. [3] [3] Fixed to be the values obtained from the dominate isotopologue. [4] [4] The standard deviation of the fit using Pickett’s SPFIT suite of program. The spectroscopic constants of HFPO
9
Molecular skeleton structure of HFPO DFT r e struct.Exp. r m (2) struct. [1] r(CF 3 – CF) / Å1.5321.546(4) r(CF – CF 2 ) / Å1.4601.451(5) r(CF 2 – O) / Å1.3801.374(2) (CF 3 –CF–CF 2 ) / º 126.6126.2(3) (CF–CF 2 –O) / º 60.159.3(2) Φ(CCC – CCO) / º101.2103.0(3) [1] The fluorine atoms related structural parameters are fixed to be the optimized values from the DFT calculation, B3LYP/6-311++G(d,p).
10
Summary Microwave spectra of HFPO: 2.0 – 26 GHz CP-FTMW: effective in S & C bands (2 – 8 GHz) a-type transitions can be observed (μ a < 0.1 Debye) All 13 C (1.07%) isotopologues can be measured in natural abundance using CP-FTMW spectrometer! Determined the skeleton r m (2) geometry of HFPO DFT calc. agrees with exp. measurements
11
Acknowledgement John B. Stephenson Fellowship, 2007 Appalachian College Association (ACA) Prof. Brooks H. Pate’s group Dr. Richard D. Suenram (NIST/UVA) Dr. Gordon G. Brown (Coker College, SC) Audience
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.