Download presentation
Presentation is loading. Please wait.
Published byJasper Patrick Modified over 8 years ago
1
Heavy Quarks + Vector Mesons in Medium Ralf Rapp Cyclotron Institute + Physics Department Texas A&M University College Station, USA School of Collective Dynamics in High-Energy Collisions “Medium Properties, Chiral Symmetry and Astrophysical Phenomena” Lawrence Berkeley National Laboratory, 22.05.07
2
1.) Introduction: QGP + High-Energy Heavy-Ion Collisions Achievements and Open Questions 2.) Heavy-Quark Probes (c,b) Heavy-Quark Diffusion in the sQGP RHIC Data 3.) Electromagnetic Radiation Relation to Chiral Symmetry Restoration In-Medium Vector Mesons Dileptons: CERES/NA45 and NA60 4.) Conclusions Outline
3
1.1 The “Little Bang” in the Laboratory e + e - Questions: Thermalization? QGP Signatures?? Phase Transition??? c,b
4
1.2 Achievements at RHIC: Towards the QGP Hadron Spectra (↔ bulk matter properties) Momenta p t ≤ 2GeV : Hydrodynamic flow (v 0,v 2 ) early thermalization, QGP pressure thermal medium, small viscosity, large opacity, partonic, T o ≈ 2 T c (indirect) [Shuryak, Heinz,…] p t ≥ 6GeV : pQCD energy-loss (factor ~5 suppression) energy densities 0 ≈ 20 GeV fm -3 [Gyulassy, Vitev, Wang, …] 2 GeV ≤ p t ≤ 6 GeV : p/ ≈1, quark “scaling” in v 2 quark coalescence [Greco et al, Fries et al, Hwa et al, …]
5
1.3 Microscopic Probes: Understanding the QGP Questions: - prevalent interactions? - d.o.f. (resonances in sQGP)? - phase diagram + transition? Advanced studies required: Heavy Quarks ► c- and b-quark energy loss, thermalization, “flow” ? ► Q-Q bound states (J/ , Y) in sQGP? Electromagnetic Emission ► photons: q 0 =q, thermal radiation? ► dileptons: (M ee ) 2 = q 0 2 - q 2 > 0 : Vector spectral functions in medium? Chiral Symmetry Restoration? -
6
p T [GeV] R AA = (AA) / (pp) [Gyulassy etal ’05] [Armesto et al ’05] substantial collectivity bottom “contamination”? Elliptic Flow Nuclear Modification Factor factor 4-5 suppression elastic E-loss, pQCD?! 2.) Heavy-Quark Probes at RHIC Radiative energy loss smaller for c+b quarks Elastic interactions? Collective flow? Heavy-quark diffusion? experimental tool: electron spectra D,B → eX c,b ?
7
Brownian Motion: scattering rate diffusion constant 2.1 Heavy-Quark Diffusion in the QGP Fokker Planck Eq. [Svetitsky ’88,…] Q e.g. T =300 MeV, s =0.4: therm ~15 fm/c slow! ( QGP ≤ 5 fm/c) 2.1.1 Perturbative QCD g c dominated by t-channel gluon-ex.: Microscopic Calculations of Diffusion: qcqc [Svetitsky ’88, Mustafa et al ’98, Molnar et al ’04, Zhang et al ’04, Hees+RR ’04, Teaney+Moore‘04]
8
2.1.2 Open-Charm Resonances in QGP effective lagrangian with pseudo/scalar + axial/vector “D-mesons” “Light”-Quark Resonances 1.4T c [Asakawa+ Hatsuda ’03] parameters: m D =2GeV, G D, m c =1.5GeV, m q =0 no. of D-states (chiral+HQ symm.): 8 per u and d, 4 for s resonance cross section isotropic, pQCD forward [van Hees+ RR ’04] c “D” c _ q _ q
9
2.1.3 Thermal Relaxation of Heavy Quarks in QGP factor ~3 faster with resonance interactions! Charm: pQCD vs. Resonances pQCD “D” c therm ≈ QGP ≈ 3-5 fm/c bottom does not thermalize Charm vs. Bottom
10
Relativistic Langevin Simulation: stochastic implementation of heavy-quark motion in expanding QGP- fireball with “hydrodynamic” evolution of bulk-matter T, v 2 2.2 Heavy-Quark Spectra at RHIC [van Hees,Greco+RR ’05] Nuclear Modification Factor resonances → large charm suppression+collectivity, not for bottom v 2 “leveling off”’ characteristic for transition thermal → kinetic Elliptic Flow
11
2.2.2 HQ Langevin Simulations: Hydro vs. Fireball [van Hees,Greco+RR ’05] Elastic pQCD (charm) + Hydrodynamics s, g 1, 3.5 0.5, 2.5 0.25,1.8 [Moore and Teaney ’04] T c =165MeV, ≈ 9fm/c s and D ~gT independent ( D ≡1.5T) gQ ~ ( s / D ) 2 s =0.4 ↔ D(2 T) ≈ 20 hydro ≈ fireball expansion
12
2.3 Single-e ± at RHIC: Effect of Resonances hadronize output from Langevin HQs ( -fct. fragmentation, coalescence) semileptonic decays: D, B → e+ +X large suppression from resonances, elliptic flow underpredicted (?) bottom sets in at p T ~2.5GeV Fragmentation only
13
less suppression and more v 2 anti-correlation R AA ↔ v 2 from coalescence (both up) radiative E-loss at high p T ?! 2.3.2 Single-e ± at RHIC: Resonances + Q-q Coalescence f q from , K Nuclear Modification Factor Elliptic Flow [Greco et al ’03]
14
2.4 Model Comparisons to Recent PHENIX Data Single-e ± Spectra [PHENIX ’06] coalescence essential for consistent R AA and v 2 other mechanisms: 3-body collisions, … [Liu+Ko’06, Adil+Vitev ‘06] pQCD radiative E-loss with 10-fold upscaled transport coeff. Langevin with elastic pQCD + resonances + coalescence Langevin with 2-6 upscaled pQCD elastic
15
2.5. Transport Properties of (s)QGP small spatial diffusion → strong coupling Spatial Diffusion Coefficient ‹x 2 ›-‹x› 2 =D x ·t, D x =2d·(T/m Q )/ D s =D x /2d E.g. strongly coupled gauge theory (AdS/CFT): /s=1/4 , D HQ ≈1/2 T resonances: D HQ ≈4-6/2 T, D HQ ~ /s ≈ (1-1.5)/ Charm-Quark Diffusion Viscosity-to-Entropy: Lattice QCD [Nakamura +Sakai ’04]
16
2.6 Potential Scattering in sQGP Lattice Q-Q Free Energy [Bielefeld Group ’04] Applications → Schröd.-Eq. → bound states (sQGP)! scattering states? imaginary parts? → Lippmann-Schwinger Equation [Shuryak,Zahed, Brown ’04] solve numerically [Mannarelli+RR ’05] q-q T-Matrix -
17
2.6.2 Charm-light Cross Sections with Lat-QCD Potential Temperature Evolution Channel Decomposition interaction strength concentrated close to threshold meson and diquark channels dominant
18
2.6.3 Friction Coefficients (Relaxation Rate): Lat-QCD vs. Resonance Model uncertainty in potential extraction from lattice QCD potential scattering comparable to resonance model close to T c T ≈ 200 MeV T ≈ 250 MeV
19
2.6.4 Charm-Quark Spectra at RHIC Nuclear Suppression Factor Elliptic Flow nonperturbative effects stronger than elastic pQCD radiative (2↔3) scattering?
20
3.) Electromagnetic Radiation E.M. Correlation Function: e + e - γ Im Π em (M,q; B,T) Im Π em (q 0 =q; B,T) Radiation Sources: Relevance: Quark-Gluon Plasma: high mass + temp. qq → e + e , … M > 1.5GeV, T >T c Hot + Dense Hadron Gas: M ≤ 1 GeV → e + e , … T ≤ T c - qqqq _ eeee e+e-e+e- qq _ e + e → hadrons
21
3.2 EM Radiation and Chiral Symmetry Axial-/Vector in Vacuum pQCD continuum at T c : Chiral Restoration Im em ~ [ImD +ImD /10+ImD /5] Low-Mass Dilepton Rate: -meson dominated! Axialvector Channel: ± invariant mass-spectra ~ Im D a1 (M) ?! ~ “ - a 1 (1260)” (chiral partners)
22
> > B *,a 1,K 1... N, ,K … 3.3 Medium Effects: Hadronic Many-Body Theory D (M,q; B,T) = [M 2 - m 2 – – B - M ] -1 -Propagator: [Chanfray et al, Herrmann et al, RR et al, Weise et al, Koch et al, Post et al, Eletsky et al, Oset et al, …] Constraints: - vacuum decays: B,M→ N, - scattering data: N, A, N→ N - QCD sum rules NANA -ex Nuclei N =0.8 0 [Urban et al ’98] = = -Selfenergies: [Ko et al ’92, Klingl et al ’97, Leupold et al ’98]
23
[RR+Gale ’99] 3.3.2 -Meson Spectral Functions at SPS -meson “melts” in hot and dense matter (→ pQCD continuum) baryon density more important than temperature reasonable agreement between models B / 0 0 0.1 0.7 2.6 Hot+Dense Matter Hot Meson Gas [RR+Wambach ’99] [Eletsky etal ’01] Model Comparison [RR+Wambach ’99]
24
3.4 Pb-Au Collisions at SPS: CERES/NA45 T 0 ≈205MeV, T fo ≈110MeV QGP contribution small medium effects on -meson! → Evolve dilepton rates over thermal fireball QGP+Mix+HG:
25
3.5 In-In at SPS: Dimuons from NA60 excellent mass resolution and statistics for the first time, dilepton excess spectra could be extracted! quantitative theory? [PRL ’06]
26
3.5.2 Dimuon Excess Spectra at SPS predicted ”melting”- confirmed, average ( ) med ≈ 350MeV ≈ m /2 relative strength of thermal sources fix, absolute yield ↔ fireball lifetime baryon effects essential; probing matter close to T c !? [van Hees +RR ‘06] Central In-In fireball: T 0-fo =195→120MeV, T c =175MeV, FB =7fm Full Spectral Functions Switch off Medium Effects
27
3.6 Chiral Virial Approach vs. NA60 chiral reduction of scatt. ME’s + low-density expansion also: compare fireball vs. hydrodynamics good agreement fireball - hydro (p T -spectra!) lack of broadening [van Hees+RR ‘06] [Dusling,Teaney+Zahed ’06]
28
3.7 NA60 p T -Spectra freezeout- : -factor! good model agreement other fireball model: harder slopes, QGP dominant at M≥1GeV [Renk+ Ruppert ’06] Fireball + Many-Body Hydro + Chiral Virial theory slopes too soft ok with data hadronic emission prevalent [Dusling+Zahed ’06] [van Hees+RR ’06]
29
4.) Summary and Conclusions Heavy quarks probe the (s)QGP: strong suppression, collectivity Importance of elastic collisions; need explicit charm pQCD not enough, resonances in sQGP?! Microscopic description (lattice QCD potentials, correlators) Electromagnetic probes are becoming a precision tool Equilibrium radiation from QCD matter!? Average -meson width ≈ m /2 ( →m toward T c ) T- and B -dependence of bare parameters in the Lagrangian? hard exp. p T -spectra
30
3.3 Dilepton Emission Rate: Hadron Gas vs. QGP “matching” of HG and QGP emission close to T c In-Medium Reduction of “Quark-Hadron Duality” Threshold ?!
31
4.3 NA60 p T -Spectra vs. Hadronic Many-Body improved freezeout- ( -factor!) + Drell-Yan (p T >1.5GeV) approx. agreement (local slopes?!) See parallel talks by H.van Hees, J.Ruppert
32
3.2 Selfconsistent T-Matrix and Selfenergy [Mannarelli+RR ’05] assume m q (gluon)=0.1GeV transition from bound (1.2T c ) to resonance states! quark-width ≈0.3GeV ≈ (2/3fm) -1 (≈ mass ↔ liquid!?) colored states, equat. of state? q-q T-Matrices - Quark Self- Energy T=1.2T c T=1.5T c T=1.75T c T=1.5T c
33
5.) Electromagnetic Probes 5.1.1 Thermal Photons I : SPS Expanding Fireball + pQCD pQCD+Cronin at q t >1.6GeV T 0 =205MeV suff., HG dom. addt’l meson-Bremsstrahlung → K→ K substantial at low q t [Liu+ RR’05] WA98 “Low-q t Anomaly” [Turbide,RR+Gale’04]
34
thermal radiation q t <3GeV ?! QGP window 1.5<q t <3GeV ?! 5.1.2 Thermal Photons II: RHIC also: -radiation off jets shrinks QGP window q t <2GeV ?! [Gale,Fries,Turbide,Srivastava ’04]
35
5.3.2 Dileptons II: RHIC low mass: thermal! (mostly in-medium ) connection to Chiral Restoration: a 1 (1260)→ , 3 int. mass: QGP (resonances?) vs. cc → e + e - X (softening?) - [RR ’01] [R. Averbeck, PHENIX] QGP
36
4.2.4 NA60 Data: Chiral Virial Approach also compare fireball vs. hydrodynamics lack of broadening good agreement hydro - fireball [ van Hees+RR ‘06] [Dusling,Teaney+Zahed ‘06]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.