Download presentation
Presentation is loading. Please wait.
Published byEaster Hood Modified over 9 years ago
1
Cryogenic ion catchers using superfluid helium and noble gases Sivaji Purushothaman KVI, University of Groningen The Netherlands
2
Content Introduction Superfluid Helium Cryogenic gas catchers Off-line On-line Summary Future plans
3
(mg/cm 3 ) (rel.) T (K) 1 bar He gas 1 bar He gas liquid He superfluid He e t Impurities get frozen out !!! High density at low temperature (mg/cm 3 ) (rel.) T (K)
4
1-2 K liquid vapour room T vacuum Cold RIBs from superfluid helium: concept 1.stop high-energy radioactive ions in superfluid helium snowballs 2.transport to the surface by electric fields 3.extraction across the surface into the vapour region electrodes 4.transport to a vacuum, room- temperature region trivial 3.extraction across the surface into the vapour region N. Takahashi et al.
5
-decay recoil ion source ranges in LHe recoil: 0.5 m : 500 m ranges in LHe recoil: 0.5 m : 500 m 223 Ra source -decay detection He gas 223 Ra: source of 219 Rn ions 1.8 ms 223 Ra 219 Rn 5-6 MeV ~ 100 keV 215 Po 211 Pb 211 Bi 207 Tl 207 Pb 4.0 s 11.4 d 36 m 2.2 m 4.8 m
6
How to extract snowballs at low temperature ? conflicting temperature requirements conflicting temperature requirements W.X. Huang et al., NIM B 204 (2003) 592 N. Takahashi et al., Physica B 329 (2003) 1596 W.X. Huang et al., Europhys. Lett. 63 (2003) 687 We go for low temperature
7
Electric-field assisted extraction 5 cm 432 10 Source Bottom electrode Guiding electrodes Focusing electrode Collector foil Detector holder LHe dewar LN2 dewar 1 K pot SF He cell alpha detector electrodes foil up to 1200 V/cm no enhanced extraction
8
Evaporation by second sound fixing hole quartz substrate NiCr thin film (140 ) current pulse heater design SF helium cell configuration NiCr heater alpha detector Al foil -200 V electrode 520 V 223 Ra 540 V Second sound - heat wave without a pressure wave
9
Release of ions by evaporation 219 Rn trapped at the surface square current pulse to the second sound heater width: 50 s period: 500 ms 219 Rn released from the surface and transported to the foil if thermal motion only: 0.04 % 7.2(6) % extraction efficiency 7.2(6) % extraction efficiency few % overall efficiency few % overall efficiency 1.05K
10
A cryogenic gas catcher alpha detector Al foil -200 V electrode 520 V 223 Ra 540 V 1 bar at room temperature helium neon argon transport of 219 Rn remove impurities 1) ultra-clean system UHV compatible bakeable helium purification < ppb not trivial (esp. large cells) 2) freezing the impurities impurities in noble gas ion catchers limit the performance: neutralization of ions (near or at thermal velocities) formation of molecules/adducts
11
Efficiencies at low temperature P. Dendooven et al., NIM A 558 (2006) 580
12
Rutherford scattering beam monitor Vacuum can 72 K shield 4 K shield Beam line Guiding electrodes cell Silicon detector Bottom electrode Al foil 1 K pot Ra source Plasma region 15 MeV Proton beam 223 Cryostat Rutherford Scattering beam monitor Online experimental setup (JYFL) Vacuum can 72 K shield Cryostat 4 K shield cell 1 K pot -240V -220V -350V -200V 250V Guiding electrodes Bottom electrode Silicon detector Al foil Ra source 223
13
On-line measurements @ Higher electric field is needed to get maximum efficiency at high beam intensities
14
On-line measurements @ 10 35
15
On-line measurements @ 10 106
16
@ Different behavior of efficiency curve may be due to the high mobility of electrons and low mobility of positive ions at low temperature & Re-ionization by beam @ 10 35 @ 106 35
17
Summary of the data
19
Recombination loss - f Ramanan, G.; Freeman, Gordon R., Journal of Chemical Physics, 93, 1990, 3120 M.Huyse et al., NIMB, 187, 2002, Pages 535-547
20
Efficiency vs. Recombination loss
21
Off-line Measurements for different pressures and temperatures
22
Summary Evidence for 2nd sound assisted extraction from superfluid helium Cryogenic gas catchers work High beam intensities require high electric fields
23
Near future plans Off-line test of second sound assisted extraction from superfluid helium On-line test of cryogenic gas catcher using radioactive ion beams Transport of ions to high vacuum, room temperature region
24
Collaborators Juha Äysto (JYFL, Jyväskylä) Peter Dendooven (KVI, Groningen) Kurt Gloos (University of Turku) Takahashi Noriaki (Osaka Gakuin University) Heikki Penttilä (JYFL, Jyväskylä) Kari Peräjävi (JYFL, Jyväskylä) Sami Rinta-Antila (JYFL, Jyväskylä) Perttu Ronkanen(JYFL, Jyväskylä) Antti Saastamoinen (JYFL, Jyväskylä) Tetsu Sonoda (JYFL, Jyväskylä)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.