Presentation is loading. Please wait.

Presentation is loading. Please wait.

Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill.

Similar presentations


Presentation on theme: "Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill."— Presentation transcript:

1 Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill

2 Agenda ► Introduction ► Analysis Using Soft Data ► BME Estimation ► Interaction with ArcGIS

3 Introduction

4 Temporal GIS analysis process Read Data File Check Data Distribution Exploratory Data Analysis Mean Trend Analysis Covariance Analysis BME Analysis Data Field Screen Data Distribution Screen Exploratory Data Analysis Screen Mean Trend Analysis Screen Space/Time Covariance Analysis Screen BME Estimation Screen

5 ► Time series of BME mean estimation ► Map of BME mean estimation ► Map of BME error variance

6 Analysis Using Soft Data

7 Data File with Soft Data ► Use five data columns -Data Type - Value1 - Value2 - Value3 - Value4 ► Data Type field  Specify data types (Hard/Uniform/Gaussian/ Triangular /Truncated Gaussian) ► Value1, Value2, Value3, and Value4 fields  Soft data parameters

8 Data Types ► Hard Data  Data Type: 0  Value1&2 Fields: Data Value ► Soft Data (Uniform)  Data Type: 1  Value1 Field: Lower Bound  Value2 Field: Upper Bound  Value3 & 4 Field: Dummy ► Soft Data (Gaussian)  Data Type: 2  Value1 Field: Mean  Value2 Field: Standard Deviation  Value3 & 4 Fields: Dummy

9 Data Types ► Soft Data (Triangular)  Data Type: 1  Value1 Field: Lower Bound  Value2 Field: Upper Bound  Value3 Field: Mode  Value4 Field: Dummy ► Soft Data (Trunc. Gaussian)  Data Type: 4  Value1 Field: Mean  Value2 Field: Standard Deviation  Value3 Field: Lower Trunc.Value  Value4 Field: Upper Trunc. value

10 Data File Example Data Type: 1 (Uniform) Lower Bound: 24.5 Upper Bound: 51.45 Data Type: 2 (Gaussian) Mean: 18.1 Standard Dev: 38.01

11 Data File Example

12 Use Data Type ► To use soft data, check “Use DataType” ► Set “Data Type”, “Value1 Field”, and “Value2 Field”

13 Hardened Data ► Histogram/Basic statistics ► Soft data is “hardened”  Uniform – Mid-point  Gaussian – Mean value  Std. formulas for others ► “Hardened” values are used in  Histogram  Explanatory data analysis  Mean trend estimation  Experimental covariance calculation

14 Exploratory Data Analysis ► “Hardened” data is used ► “Temporal Evolution” tab  Hard data: Blue circle  Soft data: red triangle Soft Data Hard Data

15 BME Estimation

16 BME Estimation Screen ► Map of BME mean estimation ► Map of BME error variance ► Time series of BME mean estimation

17 Spatial/Temporal estimation ► Spatial/Temporal Distribution Tabs  BME estimation map at specific time  BME estimation time series at specific station ► Each tab contains sub-tab displaying the list of plots

18 BME Estimation Parameters ► Spatial Estimation (Map)  BME Parameters  Estimation Grid  Display Grid ► Temporal Estimation (Time Series)  BME Parameters  Estimation Parameters  Display Parameter

19 BME Parameters ► Five parameters for BME estimation  Maximum Spatial Distance  Maximum Temporal Distance  Space/Time Metric  Max. Number of Data Point  Order ► BMEGUI calculates default parameters based on the covariance model

20 Parameters for Spatial Estimation ► Estimation Grid  Estimation Time  Number of estimation point (X and Y)  Area of estimation grid  Include Data Points/Voronoi Points ► Display Grid  Number of display point (X and Y)

21 Estimation Grid Data PointsEstimation GridVolonoi Points

22 Display Grid Estimation Points Display Grid

23 BME Spatial Estimation ► Input parameters, then click “Estimate” button BME parameters Estimation Grid Display Grid “Estimate” button

24 Maps of BME Mean Estimate and BME Error Variance ► Two new tabs  Plot ID: xxxx(Mean)  Plot ID: xxxx(Error) ► New entry in the list (Plot ID, EstimationTime)

25 Maps of BME Mean Estimate and BME Error Variance

26 Close Map Tabs ► Select the tab you want to close ► Click “Close Tab” button

27 Redraw Maps ► Select the plot from the list ► Click “Show” button

28 Remove Maps ► Select the plot from the list ► Click “Delete” button

29 Parameters for Temporal Estimation ► Estimation Parameters  Station ID  Estimation Period ► Display Parameter  Scaling Factor

30 BME Temporal Estimation ► Input parameters, then click “Estimate” button BME parameters Estimation Parameters Display Parameter “Estimate” button

31 Time Series of BME Mean Estimate ► One new tab  Plot ID: xxxx ► New entry in the list (Plot ID, Station ID)

32 Time Series of BME Mean Estimate ► Solid line: BME Mean Estimate ► Dotted line: Upper/Lower Bound (67% CI) ► Data Points (Hard/Uniform/Gaussian)

33 Scale Factor ► Change the scale of Gaussian type soft data to adjust the size on the plot Scale Factor = 0.1 Scale Factor = 1.0

34 Interaction with ArcGIS

35 ► Point Layer File  Exploratory Data Analysis (Spatial Distribution)  Mean Trend Analysis (Raw/Smoothed Mean Trend)  BME Mean/Error Estimation (Estimation Grid) ► Raster File (ArcASCII)  BME Mean Estimation  BME Error Estimation ► All files will be created in “Workspace”

36 Create Point Layer

37 Create Point Layer / Raster 1. Select Plot 2. Plot Button

38 ArcGIS Files ► Exploratory Analysis (Spatial Distribution)  Vector data file (.csv) ► Mean Trend  Vector data file (.csv) ► BME Estimation  Vector data file (.csv): Estimation Point  ArcASCII : BME Mean Raster  ArcASCII : BME Error Variance Raster


Download ppt "Mapping Estimation with BMEGUI Prahlad Jat (1) and Marc Serre (1) (1) University of North Carolina at Chapel Hill."

Similar presentations


Ads by Google