Presentation is loading. Please wait.

Presentation is loading. Please wait.

H 1 Kobe Instrument Division Back to Basics - LCRZ Module Component Industry Trends Driven by New End-User Equipment VHS 32 1 4 5 6 7 8 9 0 * #

Similar presentations


Presentation on theme: "H 1 Kobe Instrument Division Back to Basics - LCRZ Module Component Industry Trends Driven by New End-User Equipment VHS 32 1 4 5 6 7 8 9 0 * #"— Presentation transcript:

1 H 1 Kobe Instrument Division Back to Basics - LCRZ Module Component Industry Trends Driven by New End-User Equipment VHS 32 1 4 5 6 7 8 9 0 * #

2 H 2 Kobe Instrument Division Back to Basics - LCRZ Module Agenda Impedance Measurement Basics Measurement Discrepancies Measurement Techniques Error Compensation

3 H 3 Impedance Definition Impedance is the total opposition a device or circuit offers to the flow of a periodic current AC test signal (amplitude and frequency) Includes real and imaginary elements Z = R + j X Z = R + j B B G RX

4 H 4 Kobe Instrument Division Back to Basics - LCRZ Module Impedance Measurement Plane O - Z = R + jX = |Z| = ARCTAN X R |Z| Resistive Real Axis Imaginary Axis Capacitive Inductive +j -j |Z| = R + X 2 2 D U T ( ) O - - O

5 H 5 Kobe Instrument Division Back to Basics - LCRZ Module Admittance Measurement Plane O - Y = G + jB = |Y| = ARCTAN B G |Y| Conductive Real Axis Imaginary Axis Inductive Capacitive +j -j |Y| = G + B 2 2 D U T ( ) O - - O Y=1/Z

6 H 6 Kobe Instrument Division Back to Basics - LCRZ Module Agenda Impedance Measurement Basics Measurement Discrepancies Measurement Techniques Error Compensation

7 H 7 Kobe Instrument Division Back to Basics - LCRZ Module Which Value is Correct? Z Analyzer Q : 165 Q = 120 LCR meter L : 5.231 uH ? ? Q : 120 LCR meter D U T L : 5.310 uH 5.310 uH 5.231 uH

8 H 8 Measurement Discrepancy Reasons Component Dependency Factors Measurement Errors True, Effective, and Indicated Values Circuit Mode (Translation Equations)

9 H 9 Kobe Instrument Division Back to Basics - LCRZ Module Measurement Discrepancy Reasons Component Dependency Factors Test signal level Test signal frequency DC bias, voltage and current Environment (temperature, humidity, etc.)

10 H 10 Kobe Instrument Division Back to Basics - LCRZ Module Component Parasitics Complicate the Measurements

11 H 11 Kobe Instrument Division Back to Basics - LCRZ Module Real World Capacitor Model Includes Parasitics

12 H 12 Kobe Instrument Division Back to Basics - LCRZ Module Quality and Dissipation Factors Q = R Energy lost Energy stored = X R 0 Q O s s O Different from the Q associated with resonators and filters The better the component, then D = 1 Q, mainly used for capacitors

13 H 13 Kobe Instrument Division Back to Basics - LCRZ Module Capacitor Reactance vs. Frequency Capacitor Model |X| Frequency X = wL X = 1 wC L C

14 H 14 Kobe Instrument Division Back to Basics - LCRZ Module Example Capacitor Resonance Impedance vs. Frequency A: |Z| A MAX 50.00 B MAX 100.0 deg B: MKR 6 320 000.000 Hz MAG 47.2113 PHASE 659.015 mdeg A MIN 20.00 START 1 000 000.000 Hz STOP 15 000 000.000 Hz 0 B MIN -100.0 deg m m

15 H 15 Kobe Instrument Division Back to Basics - LCRZ Module C Variations with Test Signal Level SMD Capacitors, Various dielectric constants K Vac C Low K Mid K High K C vs DC Voltage Bias Type I and II SMD Capacitors Vdc Type I Type II C / % 0 50100 0 2 -2 -4 -6 -8 -10 -20 NPO (low K) X7R (high K) C vs AC Test Signal Level

16 H 16 Kobe Instrument Division Back to Basics - LCRZ Module C vs. Temperature Type I and II SMD Capacitors T / C Type I Type II C / % -60 60 140 10 15 5 0 -5 -10 -15 -20 NPO (low K) X7R (high K) -20 20100

17 H 17 Kobe Instrument Division Back to Basics - LCRZ Module L vs. DC Current Bias Level Power Inductors Idc L / % 0 50100 0 2 -2 -4 -6 -8 -10 -20

18 H 18 Component Dependency Factors Test signal frequency Test signal level DC bias, voltage and current Environment ( temperature, humidity, etc.) Aging Component's current state

19 H 19 Kobe Instrument Division Back to Basics - LCRZ Module Which Value Do We Measure? TRUE EFFECTIVE INDICATED +/- Instrument Test fixture Real world device %

20 H 20 Kobe Instrument Division Back to Basics - LCRZ Module Measurement Set-Up DUT R + jXx x Test Fixture Instrument Port Extension

21 H 21 Sources of Measurement Errors Measurement technique inaccuracies Fixture residuals RFI and other noise DUT stray and lead parasitics Port Extension complex residuals

22 H 22 Kobe Instrument Division Back to Basics - LCRZ Module Sources of Measurement Errors DUT R + jX x x Test Fixture Instrument Port Extension Technique Inaccuracies Residuals Noise Parasitics Complex Residuals

23 H 23 Kobe Instrument Division Back to Basics - LCRZ Module Actions for Limiting Measurement Errors DUT R + jXx x Test Fixture Instrument Port Extension Calibration Compensation Guarding LOAD Compensation EShielding

24 H 24 Kobe Instrument Division Back to Basics - LCRZ Module What Do Instruments... I-V Method Reflection Coefficient Method Measured Direct I, V Z = Ls, Lp, Cs, Cp, Rs or ESR, Rp, D, Q Calculations Model based Approximations C R C R p p s s D U T ? x,y Z = Z o 1 + 1 - I V Measure ? Calculate ? Approximate ?

25 H 25 Kobe Instrument Division Back to Basics - LCRZ Module Circuit Mode Requires Simplified Models No L Capacitor Model Complete Capacitor Model Rs,Ls,Rp,Cp ? TOO COMPLEX

26 H 26 Kobe Instrument Division Back to Basics - LCRZ Module Circuit Mode Large C Small C No L Capacitor Model Series model Parallel model Rs Rp C Rs Cs Rp Cp Small L Large L Rs vs Rp, who wins ? SMD

27 H 27 Kobe Instrument Division Back to Basics - LCRZ Module Which Model is Correct ? Both are correct One is a better approximation For high Q or low D components, C s C p C R C R C = C (1 + D ) p p s s sp 2

28 H 28 Kobe Instrument Division Back to Basics - LCRZ Module Agenda Impedance Measurement Basics Measurement Discrepancies Measurement Techniques Error Compensation

29 H 29 Kobe Instrument Division Back to Basics - LCRZ Module Measurement Techniques Auto Balancing Bridge Resonant (Q-adapter / Q-Meter) RF I-V Network Analysis (Reflection Coefficient) TDR (Time Domain Reflectometry) I-V (Probe)

30 H 30 Kobe Instrument Division Back to Basics - LCRZ Module Measurement Technique Topics Technique Selection Criteria Theory of Operation Advantages and Disadvantages of each technique Expanded connection information and theory for auto balancing bridge (r4 terminal pair) instruments Error Compensation to minimize measurement error

31 H 31 Kobe Instrument Division Back to Basics - LCRZ Module Measurement Technique Selection Criteria Frequency DUT Impedance Required measurement accuracy Electrical test conditions Measurement parameters Physical characteristics of the DUT

32 H 32 Kobe Instrument Division Back to Basics - LCRZ Module Frequency vs. Measurement Techniques Network Analysis 100KHz 1101001K 10K100K 1M 10M 100M 1G 10G Frequency (Hz) Auto Balancing Bridge 5HZ 40MHz 22KHz 70MHz Resonant I-V 10KHz110MHz 30MHz RF I-V 1 MHz1.8 GHz

33 H 33 Kobe Instrument Division Back to Basics - LCRZ Module Z and C vs. Frequency 1 101001K 10K100K 1M 10M 100M 1G 10M 1M 100K 10K 1K 100 10 1 100m 1mF 10mF 100mF 100uF 10uF 1uF 100nF 10nF 1nF 10pF 100fF 1fF Frequency (Hz) Impedance (Ohms) 160 100pF 1pF 10fF

34 H 34 Kobe Instrument Division Back to Basics - LCRZ Module Reactance Chart 1 101001K 10K100K 1M 10M 100M 1G 10M 1M 100K 10K 1K 100 10 1 100m 10nH 1nH 100pH 100nH 1uH 10uH 100uH 1mH 10mH 100mH 10H 1KH 100KH 1mF 10mF 100mF 100uF 10uF 1uF 100nF 10nF 1nF 10pF 100fF 1fF Frequency (Hz) Impedance (Ohms)

35 H 35 Kobe Instrument Division Back to Basics - LCRZ Module Solution by Frequency Comparison Frequency 10M 1M 100K 10K 1K 100 10 1 100m Impedance (Ohms) 10m 1m 100M 100K 1M 10M 100M 1G Hz 10G Network Analysis RF I-V 10100 1K 10K I-V (Probe) Auto Balancing Bridge

36 H 36 Kobe Instrument Division Back to Basics - LCRZ Module Which is the Best ? All are good Each has advantages and disadvantages Multiple techniques may be required

37 H 37 Kobe Instrument Division Back to Basics - LCRZ Module Auto Balancing Bridge Theory of Operation V - + 2 V 1 DUT V = I R 2 2 2 Z = V I 1 2 = V R V 2 1 2 H L R 2 I 2 Virtual ground I I = I 2

38 H 38 Auto Balancing Bridge Most accurate, basic accuracy 0.05% Widest measurement range Widest range of electrical test conditions Simple-to-use Advantages and Disadvantages Low frequency, f < 40MHz C,L,D,Q,R,X,G,B,Z,Y,O,...

39 H 39 Kobe Instrument Division Back to Basics - LCRZ Module Performing High Q / Low D Measurement is Difficult Q = X R l -jX +jX R Impedance of very high Q device Very small R, difficult to measure R1 X1

40 H 40 Kobe Instrument Division Back to Basics - LCRZ Module Resonance (Q - Meter) Technique Theory of Operation Tune C so the circuit resonates At resonance X = -X, only R remains DC D V ~ OSC Tuning C (X c) V L (X ), R D D DUT e I= e Z X = = (at resonance) C V I R V e D Q = = = |V| e |X | R D D R D C

41 H 41 Resonant Method Advantages and Disadvantages requires experienced user VectorScalar automatic and fast manual and slow easy to use No compensation limited compensation 75kHz - 30MHz 22kHz - 70MHz Very good for high Q - low D measurements Requires reference coil for capacitors Limited L,C values accuracy

42 H 42 Kobe Instrument Division Back to Basics - LCRZ Module I - V Probe Technique Theory of Operation V 2 V 1 DUT V = I R 2 2 2 Z = V I 1 2 = V R V 2 1 2 I 2 R 2

43 H 43 I-V (Probe) Medium frequency, 10kHz < f < 110MHz Moderate accuracy and measurement range Advantages and Disadvantages Grounded and in-circuit measurements Simple-to-use

44 H 44 Kobe Instrument Division Back to Basics - LCRZ Module RF I-V Theory of Operation Vi Vv Ro Vi Vv Ro DUT Voltage Current Voltage Detection Current Detection High Impedance Test Head Low Impedance Test Head

45 H 45 RF I-V High frequency, 1MHz < f < 1.8GHz Most accurate method at > 100 MHz Grounded device measurement Advantages and Disadvantages

46 H 46 Kobe Instrument Division Back to Basics - LCRZ Module Network Analysis (Reflection) Technique Theory of Operation DUT V V INC R V V R Z - Z L O Z + Z L O = =

47 H 47 Network Analysis High frequency - Suitable, f > 100 kHz Moderate accuracy Limited impedance measurement range (DUT should be around 50 ohms) Advantages and Disadvantages - Best, f > 1.8 GHz

48 H 48 Kobe Instrument Division Back to Basics - LCRZ Module H TDR Theory of Operation V V INC R Z - Z L O Z + Z L O = = Z L DUT Oscilloscope Step Generator V V INC R Series R & L Parallel R & C 0 t

49 H 49 TDNA (TDR) Reflection and transmission measurements Single and multiple discontinuities or impedance Advantages and Disadvantages DUT impedance should be around 50 ohms mismatches ("Inside" look at devices) Good for test fixture design, transmission lines, high frequency evaluations Not accurate for m or M DUTs or with multiple reflections

50 H 50 Kobe Instrument Division Back to Basics - LCRZ Module Simple Selection Rules Summary Auto balancing bridge, I-V, in-circuit and grounded measurements, medium frequency, 10KHz < f < 110MHz low frequency, f < 40MHz Network analysis, Resonant, high Q and low D TDNA, discontinuities and distributed characteristics high frequency, f > 1.8 GHz RF I-V, high frequency impedance measurement, 1MHz < f < 1.8GHz

51 H 51 Measurement Methods and HP products Auto Balancing Bridge (Four-Terminal Pair) Resonant (Q-Meter) RF I-V Measurement MethodHP ProductsFrequency range HP 41941A Impedance Probe (with HP 4194A) HP 4193A Vector Impedance Meter HP 42851A Q Adapter ( with HP 4285A) 10KHz to 100MHz 400KHz to 110MHz 10Hz to 40MHz 5Hz to 13MHz 20Hz to 1MHz spot 100Hz to 10MHz spot 75KHz to 30MHz HP 4263A LCR Meter HP 4284A Precision LCR Meter HP 4192A LF Impedance Analyzer HP 4194A Impedance/Gain-Phase Analyzer HP 4285A Precision LCR Meter HP 427xA LCR Meters HP 4286A RF LCR Meter HP 4291A Impedance/Material Analyzer 100Hz to 100 kHz spot 1 MHz to 1 GHz 1 MHz to 1.8 GHz I-V (Probe)

52 H 52 Measurement Methods and HP products (cont.) Network Analysis (Reflection Coefficient) TDNA (TDR) Measurement Method HP Products Frequency range 300KHz to 1.3GHz/6GHz 130MHz to 13.5GHz/20GHz 45 MHz to 100GHz 5Hz to 500MHz 100 kHz to 500MHz 100 kHz to 1.8 GHz HP 8751A Network Analyzer HP 8752C/8753D RF Network Analyzers HP 8510B Network Analyzer HP 54121T Digitizing Oscilloscope and TDR HP 4195A Network/Spectrum Analyzer with HP 41951A Impedance Test Set HP 8752C/8753D RF Network Analyzers HP 8719C/8720C Network Analyzers HP 8510B Network Analyzer HP 8719C/8720C Network Analyzers HP 4396A Network/Spectrum Analyzer with HP 43961A Impedance Test Kit

53 H 53 Kobe Instrument Division Back to Basics - LCRZ Module Selecting a Test Frequency Ideal case is at operating conditions Reality, must make trade-offs Too high a frequency adds measurement, test fixture and instrument errors m and M DUTs more diffucult to measure

54 H 54 Kobe Instrument Division Back to Basics - LCRZ Module Measurement Tradeoff Example 1 101001K 10K100K 1M 10M 100M 1G 10M 1M 100K 10K 1K 100 10 1 100m 1mF 10mF 100mF 100uF 10uF 1uF 100nF 10nF 1nF 10pF 100fF 1fF F (Hz) 100pF 1pF 10fF Z ( ) 4284A @ 1MHz (1600 ) : 0.05% 4284A4194A 41941 4195A Want to measure 100 pF ideal capacitor @ 200 MHz 4194A @ 10MHz (160 ) : 1.3 % 4194A @ 40MHz ( 40 ) : 5.2 % 41941A @ 40MHz ( 40 ) : 3.6 % 41941A @ 100MHz ( 16 ) : 6.2 % 4195A @ 200MHz ( 8 ) : 1.9 % Accuracy comparison

55 H 55 Kobe Instrument Division Back to Basics - LCRZ Module Auto Balancing Bridge A: Cp A MAX 13.00 pF B MAX 350.0 m B: D MKR 1 006 570.375 Hz Cp 10.0742 pF A/DIV 500.0 fF START 1 000.000 Hz STOP 40 000 000.000 Hz B\DIV 50.00 m D

56 H 56 Kobe Instrument Division Back to Basics - LCRZ Module I - V A: Cp A MAX 13.00 pF B MAX 1.000 B: D MKR 1 011 579.454 Hz Cp 10.4523 pF A/DIV 500.0 fF START 100 000.000 Hz STOP 100 000 000.000 Hz B MIN 0.000 D

57 H 57 Kobe Instrument Division Back to Basics - LCRZ Module Network Analysis A: REF 13.00p [ F ] B: REF MKR 1 018 519.448 Hz Cp 10.7531p F DIV START 100 000.000 Hz STOP 500 000 000.000 Hz 500.0f D IMPEDANCE 180.0 [ F ] RBW: 3 KHZ ST: 6.15 sec RANGE: A= 0, T= 0dBm 36.00 DIV

58 H 58 Kobe Instrument Division Back to Basics - LCRZ Module Agenda Impedance Measurement Basics Measurement Discrepancies Measurement Techniques Error Compensation

59 H 59 Kobe Instrument Division Back to Basics - LCRZ Module Error Compensation to Minimize Measurement Errors Compensation and Calibration (Compensation = Calibration) – Definition of Compensation and Calibration – Cable correction OPEN/SHORT Compensation – Basic Theory – Problems which can not be eliminated by OPEN/SHORT compensation OPEN/SHORT/LOAD Compensation – Basic Theory – Load device selection Practical Examples Summary

60 H 60 Kobe Instrument Division Back to Basics - LCRZ Module To define the "Calibration Plane" at which measurement accuracy is specified Definition of Calibration Z Analyzer LCR Meter Standard Device 100 Calibration Plane (Measurement accuracy is specified.) ! 100

61 H 61 Kobe Instrument Division Back to Basics - LCRZ Module Cable Correction Definition : Calibration Plane extension using specified HP cables (HP 16048A/B/D/E) LCR Meter LCR Meter HP Measurement Cable Calibration Plane

62 H 62 Kobe Instrument Division Back to Basics - LCRZ Module Definition of Compensation To reduce the effects of error sources existing between the DUT and the instrument's "Calibration Plane". Z Analyzer LCR Meter Fixture Cables Scanner, etc. 100 +Z Z DUT 100 2 types of compensation - OPEN/SHORT compensation - OPEN/SHORT/LOAD compensation Calibration Plane

63 H 63 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT Compensation - Basic Theory - Zdut Rs Ls CoGo Hc Hp Lp Lc Zm Stray Residual Test Fixture Residuals Admittance ( Yo ) Impedance ( Zs ) Zs = Rs + j  Ls Yo = Go + j  Co Zdut = 1 - (Zm - Zs)Yo Zm - Zs

64 H 64 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT Compensation Issues Problem 1 SCANNER Complicated Residuals Stray capacitance Residual inductance Residual resistance DUT Difficulty to eliminate complicated residuals LCR Meter

65 H 65 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT Compensation Issue Problem 2 Difficulty to eliminate Phase Shift Error LCR Meter DUT Test Fixture Not a standard length cable* * Or not an HP cable

66 H 66 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT Compensation Issue Problem 3 Difficulty to have correlation among instruments. Discrepancy in Measurement Value 100 pF 99.7pF 101 pF 102 pF Ideal CaseReal World 0.01 0.02 0.005 0.0003 Instrument #1 Instrument #2 Instrument #3

67 H 67 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT/LOAD Compensation - Basic Theory - Zdut A B C D DUT V 2 V 1 Unknown 2-terminal Impedance Instrument I 1 I 2 pair circuit

68 H 68 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT/LOAD Compensation - Basic Theory - Zstd (Zo - Zsm) (Zxm - Zs) * Zxm - Zs) (Zo - Zxm) Zdut = Zo : OPEN measurement value Zs : SHORT measurement vaue Zsm : Measurement value of LOAD device Zstd : True value of LOAD device Zxm : Measurement value of DUT Zdut : Corrected value of DUT * These are complex vectors. Conversions to real and imaginary components are necessary

69 H 69 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT/LOAD Compensation Eliminates phase shift error Maximizes correlation between instruments Eliminates complicated residuals

70 H 70 Kobe Instrument Division Back to Basics - LCRZ Module OPEN/SHORT/LOAD Compensation Effects ) ( 1 2 C-measurement error [%] Frequency [kHz] 8001000 600400200 OPEN/SHORT compensation OPEN/SHORT/LOAD compensation ) ( 3

71 H 71 Kobe Instrument Division Back to Basics - LCRZ Module Procedure of OPEN/SHORT/LOAD Compensation 1. Measure LOAD device 2. Input LOAD measurement value as a reference value. Direct-connected test fixture as accurately as possible.

72 H 72 Kobe Instrument Division Back to Basics - LCRZ Module Procedure of OPEN/SHORT/LOAD Compensation 3. Perform OPEN/SHORT/LOAD compensation at the test terminal. 4. Measure DUT at the test terminal. Test Terminal Test Fixture with complicated residuals

73 H 73 Kobe Instrument Division Back to Basics - LCRZ Module LOAD Device Selection - Consideration 1 - When you measure DUTs which have various impedance values, Select a LOAD device whose impedance value is 100  ~ 1k . When you measure a DUT which has only one impedance value, Select a LOAD device whose impedance value is close to that of the DUT to be measured.

74 H 74 Kobe Instrument Division Back to Basics - LCRZ Module LOAD Device Selection - Consideration 2 - Select pure and stable capacitance or resistance LOAD value must be accurately known. loads (low D capacitors - i.e. mica)

75 H 75 Kobe Instrument Division Back to Basics - LCRZ Module Practical Examples 4284A 16047C DUT 4285A 16048D 16047A (A)(B) (1) (2)

76 H 76 Kobe Instrument Division Back to Basics - LCRZ Module Practical Examples 4285A DUT 4285A 16048A (C) (D) DUT 16047A Non-HP Cable SCANNER (1) (2)

77 H 77 Kobe Instrument Division Back to Basics - LCRZ Module Practical Example (E) 4195A 16092A 41951A (2) (1)

78 H 78 Kobe Instrument Division Back to Basics - LCRZ Module Summary Calibration and Compensation Comparison Theory Calibration Cable correction Compensation OPEN/SHORT Compensation OPEN/SHORT/LOAD Compensation Eliminate instrument system errors Define the "Calibration Plane using a CAL standard Eliminate the effects of cable error Extend "Calibration Plane" to the end of the cable Eliminate the effects of error sources existing between "Calibration Plane" and DUT Eliminate the effects of simple fixture residuals Eliminate the effects of complex fixture residuals

79 H 79 Kobe Instrument Division Back to Basics - LCRZ Module Summary Which compensation technique should you select? - Selection Guideline - Instruments Fixture Connection Primary Fixture Secondary Fixture Residual Compensation OPEN/SHORT only Cable correction + OPEN/SHORT OPEN/SHORT/LOAD OPEN/SHORT or OPEN/SHORT/LOAD Direct Test Fixture Complicated Fixture Scanner, etc. Direct Test Fixture Other Fixtures Direct Test Fixture Specified HP Cable Non-specified HP cable Non-HP cable Self-made Test Fixture (4284A, 4285A etc.) Z Analyzer LCR Meter Cable correction + OPEN/SHORT/LOAD


Download ppt "H 1 Kobe Instrument Division Back to Basics - LCRZ Module Component Industry Trends Driven by New End-User Equipment VHS 32 1 4 5 6 7 8 9 0 * #"

Similar presentations


Ads by Google