Presentation is loading. Please wait.

Presentation is loading. Please wait.

Silicon 2010, N. Novgorod >09.07.2010 Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland.

Similar presentations


Presentation on theme: "Silicon 2010, N. Novgorod >09.07.2010 Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland."— Presentation transcript:

1 Silicon 2010, N. Novgorod >09.07.2010 Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland 2, K. Litvinenko 3, R. Eichholz 1, V.N. Shastin 4, B. Redlich 5, A.F.G. van der Meer 5, N.V. Abrosimov 6, H. Riemann 6, H.-J. Pohl 7, G. Aeppli 2, B.N. Murdin 3, C.R. Pidgeon 8, and H.-W. Hübers 1,9 1) Institute of Planetary Research, German Aerospace Center (DLR), Berlin, Germany 2) London Centre for Nanotechnology and Department of Physics and Astronomy, University College London, England 3) Advanced Technology Institute, University of Surrey, Guildford, England 4) Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia 5) FOM-Institute for Plasma Physics, Nieuwegein, The Netherlands 6) Leibniz Institute of Crystal Growth, Berlin, Germany 7) VITCON Projectconsult GmbH, Jena, Germany 8) Department of Physics, Heriot-Watt University Riccarton, Edinburgh, Scotland 9) Institut für Optik und Atomare Physik, Technische Universität Berlin, Germany

2 Folie 2 Silicon 2010, N. Novgorod >09.07.2010 Intracenter electronic relaxation in silicon: basics Recombination of electrons and donors in n-type germanium G. Ascarelli and S. Rodriguez Phys. Rev. 124, 1321, 1961 Cascade capture of electrons in solids M. Lax, Phys. Rev. 119, 1502,.1960 Evidence of noncascade intracenter electron relaxation in shallow donor centers in silicon, S.G. Pavlov, H.-W. Hübers, P.M. Haas, J.N. Hovenier, T.O. Klaassen, R.Kh. Zhukavin, V.N. Shastin, D.A. Carder and B. Redlich, Phys. Rev. B. 78, 165201, 2008. Релаксация возбужденных состояний доноров с излучением междолинных фононов- В.В. Цыпленков, Е.В. Демидов, К.А. Ковалевский, В.Н.Шастин, ФТП 42, 1032, 2008.

3 Folie 3 Silicon 2010, N. Novgorod >09.07.2010 Relaxation of individual impurity states in silicon: experiments T*=

4 Folie 4 Silicon 2010, N. Novgorod >09.07.2010 Relaxation of individual impurity states in natural Si:P: experiments Silicon as a model ion trap: Time domain measurements of donor Rydberg states, N.Q. Vinh, P.T. Greenland, K. Litvinenko, B. Redlich, A.F.G. van der Meer, S.A. Lynch, M. Warner, A.M. Stoneham, G. Aeppli, D.J. Paul, C.R. Pidgeon and B.N. Murdin, PNAS 105, 10649, 2008.

5 Folie 5 Silicon 2010, N. Novgorod >09.07.2010 Natural linewidth of impurity transitions in 28 Si:P: HR absorption spectroscopy Shallow impurity absorption spectroscopy in isotopically enriched silicon, M. Steger, A. Yang, D. Karaiskaj, M.L.W. Thewalt, E.E. Haller, J.W. Ager, III, M. Cardona, H. Riemann, N.V. Abrosimov, A.V. Gusev, A.D. Bulanov, A.K. Kaliteevskii, O.N. Godisov, P. Becker, and H.-J. Pohl, Phys. Rev. B. 79, 205210, 2009.   5.3ps / FWHM (cm -1 ) Natural linewidth of atomic transitions

6 Folie 6 Silicon 2010, N. Novgorod >09.07.2010 Avogadro Project -redefine the kilogram based on the lattice constant and density of 28 Si enrichment: 99.99459% [P] ~ 5  10 11 cm -3 4  10 15 cm -3 [B] ~ 5  10 13 cm -3 dislocation free Isotopically enriched 28 Si:P.

7 Folie 7 Silicon 2010, N. Novgorod >09.07.2010 Relaxation of individual impurity states in silicon: variation of experimental results

8 Folie 8 Silicon 2010, N. Novgorod >09.07.2010 Relaxation of individual impurity states in silicon: variation of experimental results

9 Folie 9 Silicon 2010, N. Novgorod >09.07.2010 Reason of negative contribution in pump-probe FEL1 (6ps) = 54.4 GHz FEL2 (10ps) = 31.5 GHz Si:P (FTS) = 28.2 GHz

10 Folie 10 Silicon 2010, N. Novgorod >09.07.2010 Reason of negative contribution in pump-probe

11 Folie 11 Silicon 2010, N. Novgorod >09.07.2010  FEL probe FELIX pump laser + - - Absorption on 2p 0  c.b. transitions delivers negative contribution in probe transmission through sample Different contributions in pump-probe

12 Folie 12 Silicon 2010, N. Novgorod >09.07.2010 Matching FEL and impurity linewidths

13 Folie 13 Silicon 2010, N. Novgorod >09.07.2010 Reduction of negative contribution in pump-probe

14 Folie 14 Silicon 2010, N. Novgorod >09.07.2010 Pumped -probed state FELIX pump laser FEL probe N D (t)=N 1s(A1) (t)+N 2p0 (t)+N 1s(E) +N 1s(T2) if two-step decay dominates: small relative absorbance: c.b. two-exp decay fit must be used where decay rates between states are: w 21 : 2p 0  1s(E,T 2 ) w 10 : 1s(E,T 2 )  1s(A 1 ) + Two-exponential decay as step-like decay of the 2p 0 state

15 Folie 15 Silicon 2010, N. Novgorod >09.07.2010 Two-exponential decay: 28 Si:P (amplitude)

16 Folie 16 Silicon 2010, N. Novgorod >09.07.2010 Two-exponential decay: 28 Si:P (decay constants)

17 Folie 17 Silicon 2010, N. Novgorod >09.07.2010 Two-exponential decay: Si:P (amplitude)

18 Folie 18 Silicon 2010, N. Novgorod >09.07.2010 Two-exponential decay: Si:P (decay constant)

19 Folie 19 Silicon 2010, N. Novgorod >09.07.2010 Optically pumped donor intracenter silicon lasers Phys. Rev. Lett. 84, 5220 (2000) Appl. Phys. Lett. 80, 4717 (2002) J. Appl. Phys. 92, 5632 (2002) Appl. Phys. Lett. 84, 3600 (2004)

20 Folie 20 Silicon 2010, N. Novgorod >09.07.2010 Conclusions: - Decay of the 2p 0 state in Si:P is very likely two-step process - Decay time on the first step (2p 0  1s(E), 1s(T 2 )) is about 200 ps for 28 Si:P and about 150 ps for Si:P - Decay time on the first step (1s(E), 1s(T 2 )  1s(A 1 ) ) is about 50 ps for 28 Si:P and about 50 ps for Si:P - experiments: different doping (done, not yet analyzed) - two-color time-resolved experiments - modeling of relaxation


Download ppt "Silicon 2010, N. Novgorod >09.07.2010 Folie 1 Relaxation of intracenter excitations in monoisotopic 28 Si:P S.G. Pavlov 1, S.A. Lynch 2, P.T. Greenland."

Similar presentations


Ads by Google