Download presentation
Presentation is loading. Please wait.
Published byEsmond Wright Modified over 8 years ago
1
Segmentation and Boundary Detection Using Multiscale Intensity Measurements Eitan Sharon, Meirav Galun, Ronen Basri, Achi Brandt Dept. of Computer Science and Applied Mathematics The Weizmann Institute of Science
2
Eitan Sharon - Weizmann Institute Image Segmentation
3
Eitan Sharon - Weizmann Institute Local Uncertainty
4
Eitan Sharon - Weizmann Institute Global Certainty
5
Eitan Sharon - Weizmann Institute Local Uncertainty
6
Eitan Sharon - Weizmann Institute Global Certainty
7
Eitan Sharon - Weizmann Institute Coarse Measurements for Texture
8
Eitan Sharon - Weizmann Institute A Chicken and Egg Problem Problem: Coarse measurements mix neighboring statistics Solution: support of measurements is determined as the segmentation process proceeds
9
Eitan Sharon - Weizmann Institute Normalized-cuts measure in graphs Complete hierarchy in linear time Use multiscale measures of intensity, texture, shape, and boundary integrity Segmentation by Weighted Aggregation
10
Eitan Sharon - Weizmann Institute Normalized-cuts measure in graphs Complete hierarchy in linear time Use multiscale measures of intensity, texture, shape, and boundary integrity Segmentation by Weighted Aggregation
11
Eitan Sharon - Weizmann Institute Segmentation by Weighted Aggregation Normalized-cuts measure in graphs Complete hierarchy in linear time Use multiscale measures of intensity, texture, shape and boundary integrity
12
Eitan Sharon - Weizmann Institute The Pixel Graph Couplings Reflect intensity similarity Low contrast – strong coupling High contrast – weak coupling
13
Eitan Sharon - Weizmann Institute Hierarchical Graph
14
Eitan Sharon - Weizmann Institute Hierarchy in SWA
15
Eitan Sharon - Weizmann Institute Normalized-Cut Measure
16
Eitan Sharon - Weizmann Institute Normalized-Cut Measure
17
Eitan Sharon - Weizmann Institute Normalized-Cut Measure
18
Eitan Sharon - Weizmann Institute Normalized-Cut Measure Minimize:
19
Eitan Sharon - Weizmann Institute Normalized-Cut Measure High-energy cut Minimize:
20
Eitan Sharon - Weizmann Institute Normalized-Cut Measure Low-energy cut Minimize:
21
Eitan Sharon - Weizmann Institute Recursive Coarsening
22
Eitan Sharon - Weizmann Institute Recursive Coarsening Representative subset
23
Eitan Sharon - Weizmann Institute Recursive Coarsening For a salient segment :, sparse interpolation matrix
24
Eitan Sharon - Weizmann Institute Weighted Aggregation aggregate
25
Eitan Sharon - Weizmann Institute Segment Detection
26
Eitan Sharon - Weizmann Institute SWA Linear in # of points (a few dozen operations per point) Detects the salient segments Hierarchical structure
27
Eitan Sharon - Weizmann Institute Coarse-Scale Measurements Average intensities of aggregates Multiscale intensity-variances of aggregates Multiscale shape-moments of aggregates Boundary alignment between aggregates
28
Eitan Sharon - Weizmann Institute Adaptive vs. Rigid Measurements Averaging Our algorithm - SWA Geometric Original
29
Eitan Sharon - Weizmann Institute Our algorithm - SWA Adaptive vs. Rigid Measurements Interpolation Geometric Original
30
Eitan Sharon - Weizmann Institute Recursive Measurements: Intensity aggregate intensity of pixel i average intensity of aggregate
31
Eitan Sharon - Weizmann Institute Use Averages to Modify the Graph
32
Eitan Sharon - Weizmann Institute Use Averages to Modify the Graph
33
Eitan Sharon - Weizmann Institute Texture Examples
34
Eitan Sharon - Weizmann Institute Isotropic and Oriented Filters Textons by K-Means Malik et al IJCV2001 A brief tutorial
35
Eitan Sharon - Weizmann Institute Isotropic Texture in SWA Intensity Variance Isotropic Texture of aggregate – average of variances in all scales
36
Eitan Sharon - Weizmann Institute Isotropic Texture in SWA Intensity Variance Isotropic Texture of aggregate – average of variances in all scales
37
Eitan Sharon - Weizmann Institute Isotropic Texture in SWA Intensity Variance Isotropic Texture of aggregate – average of variances in all scales
38
Eitan Sharon - Weizmann Institute Oriented Texture in SWA Shape Moments Oriented Texture of aggregate – orientation, width and length in all scales center of mass width length orientation with Meirav Galun
39
Eitan Sharon - Weizmann Institute Gestalt – Perceptual Grouping A brief Tutorial Sharon, Brandt, Basri PAMI 2000: Shashua and Ullman ICCV 1988: Group curves by: Proximity Co-linearity
40
Eitan Sharon - Weizmann Institute Boundary Integrity in SWA
41
Eitan Sharon - Weizmann Institute Sharpen the Aggregates Top-down Sharpening: Expand core Sharpen boundaries
42
Eitan Sharon - Weizmann Institute Hierarchy in SWA
43
Eitan Sharon - Weizmann Institute Experiments Our SWA algorithm (CVPR’00 + CVPR’01) run-time: 5-10 seconds. Normalized cuts (Shi and Malik, PAMI ’ 00; Malik et al., IJCV ’ 01) run-time: about 10-15 minutes. Software courtesy of Doron Tal, UC Berkeley. images on a pentium III 1000MHz PC:
44
Eitan Sharon - Weizmann Institute Isotropic Texture - Horse I Our Algorithm (SWA) Normalized Cuts
45
Eitan Sharon - Weizmann Institute Isotropic Texture - Horse II Our Algorithm (SWA)Normalized Cuts
46
Eitan Sharon - Weizmann Institute Isotropic Texture - Tiger Normalized Cuts Our Algorithm (SWA)
47
Eitan Sharon - Weizmann Institute Isotropic Texture - Butterfly Our Algorithm (SWA) Normalized Cuts
48
Eitan Sharon - Weizmann Institute Isotropic Texture - Leopard Our Algorithm (SWA)
49
Eitan Sharon - Weizmann Institute Isotropic Texture - Dalmatian Dog Our Algorithm (SWA)
50
Eitan Sharon - Weizmann Institute Isotropic Texture - Squirrel Our Algorithm (SWA)Normalized Cuts
51
Eitan Sharon - Weizmann Institute Full Texture - Squirrel Our Algorithm (SWA)Normalized Cuts with Meirav Galun
52
Eitan Sharon - Weizmann Institute Full Texture - Composition Our Algorithm (SWA) with Meirav Galun
53
Eitan Sharon - Weizmann Institute Full Texture – Lion Cub Our Algorithm (SWA) with Meirav Galun
54
Eitan Sharon - Weizmann Institute Full Texture – Polar Bear Our Algorithm (SWA) with Meirav Galun
55
Eitan Sharon - Weizmann Institute Full Texture – Penguin Our Algorithm (SWA) with Meirav Galun
56
Eitan Sharon - Weizmann Institute Full Texture –Leopard Our Algorithm (SWA) with Meirav Galun
57
Eitan Sharon - Weizmann Institute Full Texture - Zebra Our Algorithm (SWA) with Meirav Galun
58
Eitan Sharon - Weizmann Institute Segmentation by Weighted Aggregation Efficient approximation to Ncut-like measures Recursive computation of multiscale measurements Novel adaptive pyramid representing the image
59
Eitan Sharon - Weizmann Institute Matching Experiment (Chen Brestel)
60
Eitan Sharon - Weizmann Institute Matching Experiment (Chen Brestel)
61
Eitan Sharon - Weizmann Institute Matching Experiment (Chen Brestel)
62
Eitan Sharon - Weizmann Institute Experiments – Clustering Silhouettes Data from: Gdalyahu, Weinshall, Werman – CVPR 99 (Also: Domany, Blatt, Gdalyahu, Weinshall)
63
Eitan Sharon - Weizmann Institute Descending order of prominence – objects are fully categorized most prominentless prominent
64
Eitan Sharon - Weizmann Institute Bottom-Up and Top-Down
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.