Presentation is loading. Please wait.

Presentation is loading. Please wait.

P. Castorina Dipartimento di Fisica ed Astronomia Università di Catania-Italy 6-10 October 2014 ECT - Trento Event horizon and entropy in high energy hadroproduction.

Similar presentations


Presentation on theme: "P. Castorina Dipartimento di Fisica ed Astronomia Università di Catania-Italy 6-10 October 2014 ECT - Trento Event horizon and entropy in high energy hadroproduction."— Presentation transcript:

1 P. Castorina Dipartimento di Fisica ed Astronomia Università di Catania-Italy 6-10 October 2014 ECT - Trento Event horizon and entropy in high energy hadroproduction QCD Hadronization and the Statistical Model Statistical and/or Entanglement hadronization?

2 Thermal hadron production: (open) questions Event horizon and thermal spectrum Unruh effect Color event horizon and hadronization Answering a là Unruh to the open questions Conclusions

3

4 Becattini (2006)

5

6

7

8 WHY ? Freeze-out s/T^3 = 7

9 A. Bazazov et al. (HotQCD Collaboration), arXiv:1407.6387

10 Freeze-out E/N = 1.08 Gev WHY ?

11 Questions 1) Why do elementary high energy collisions show a statistical behavior? 2) Why is strangeness production universally suppressed in elementary collisions? 3) Why (almost) no strangeness suppression in nuclear collisions? 4) Why hadron freeze-out for s/T^3 = 7 or E/N=1.08 Gev Is there another non-kinetic mechanism providing a common origin of the statistical features?

12 Conjecture Physical vacuumEvent horizon for colored constituents Thermal hadron production Hawking-Unruh radiation in QCD P.C., D.Kharzeev and H.Satz -- D.Kharzeev and Y.Tuchin ( temperature) F.Becattini, P.C., J.Manninen and H.Satz (strangeness suppression in e+e-) P.C. and H.Satz (strangeness enhancement in heavy ion collisions) P.C., A. Iorio and H.Satz ( entropy and freeze-out) arXiv:1409.3104 Adv.High Energy Phys. 2014 (2014) 376982 Eur.Phys.J. C56 (2008) 493-510 Eur.Phys.J. C52 (2007) 187-201 Nucl. Phys. A 753, 316 (2005)

13 Recall

14 M. K. Parikh and F. Wilczek, “Hawking radiation as tunneling,” Phys. Rev. Lett. 85 (2000) 5042

15 arXiv:0710.5373 The Unruh effect and its applications Luis C. B. CrispinoLuis C. B. Crispino, Atsushi Higuchi, George E. A. MatsaAtsushi HiguchiGeorge E. A. Matsa Rindler observer

16

17 QFT - Unruh (elementary)

18

19

20

21 G R. ParentaniR. Parentani, S. Massar. Phys.Rev. D55 (1997) 3603-3613S. Massar THE SCHWINGER MECHANISM, THE UNRUH EFFECT AND THE PRODUCTION OF ACCELERATED BLACK HOLES Applications (elementary implementation) R. Brout, R. Parentani, and Ph. Spindel, “Thermal properties of pairs produced by an electric field: A tunneling approach,” Nucl. Phys. B 353 (1991) 209.

22

23 Universal thermal behavior Event Horizon Uniform acceleration In QCD ? Confinement

24

25

26 QCD - Uniform acceleration

27

28

29

30

31

32

33

34 TOY MODEL

35 Full analysis F.Becattini, P.C., J.Manninen and H.Satz (strangeness suppression in e+e-) Eur.Phys.J. C56 (2008) 493-510

36

37 F.Becattini, P.C., J.Manninen and H.Satz (strangeness suppression in e+e-)

38 String breaking and E/N = 1.08 Gev

39

40 Bekenstein-Hawking black-hole entropy ( scale of quantum gravity fluctuactions)

41 1) Valid for a Rindler horizon ( constant acceleration)? 2) What is the scale r? r is the typical (short) scale of quantum fluctuaction Lambiase, Iorio, Vitiello Annals of Physics 309 (2004) 151 M.Srednicki PRL 71(1993)666 H.Terashima PRD 61(2000) 104016 QFT L. Bombelli, R. K. Koul, J. H. Lee and R. D. Sorkin, Phys. Rev. D 34, 373 (1986).

42 String breaking and

43 physical meaning : entanglement Preliminary – work in progress P.C., A. Iorio and H.Satz

44

45 an interesting example Chirco et al. PRD 90,044044,2014

46

47 BUT and therefore

48

49 Unruh and Minkowsky Exactly as in the previous example

50 K

51 Ted JacobsonTed Jacobson, Renaud Parentani, Horizon Entropy in Found.Phys. 33 (2003) 323-348Renaud Parentani Statistical mechanics of causal horizon

52 The deep meaning of the result based on ( at least for ) is that the entanglement entropy density per unit horizon area is finite and universal.. In QFT M.Srednicki PRL 71(1993)666 H.Terashima PRD 61(2000) 104016 QFT Lambiase, Iorio, Vitiello, Annals of Physics 309 (2004) 151

53 A possible understanding of the phenomenological result is that it corresponds to the entanglement entropy through the color confinement horizon due to the string tension. Entanglement hadronization Problem of species? Entanglement explicit calculation Preliminary – work in progress P.C., A. Iorio and H.Satz

54

55 P.C. and H.Satz arXiv:1403.3541 arXiv:1403.3541 Hawking-Unruh Hadronization and Strangeness Production in High Energy Collisions (a first preliminary step) heavy ions

56 TOY MODEL

57

58 The Wrobleski factor increases from 0.25 in elementary collisions to 0.36 in the toy (pions and kaons) model.

59 Criteria for hadron freeze-out Work in progress

60

61 Data from F. Becattini, J. Manninen, and M. Gazdzicki, “Energy and system size dependence of chemical freeze-out in relativistic nuclear collisions,” Phys. Rev. C73 (2006) 044905,

62

63 For the Unruh mechanism explains the freeze-out criteria E/N = 1.08 Gev and suggests a physical motivation for s/T^3 = 7 Fundamental Physics ! BH

64 But there is more statistical/entanglement ? Hawking-Unruh radiation in a lab! Competitors: Gravity analogue Lasers - Unruh, Schutzhold,… Hawking-Unruh effect in Graphene - Lambiase-Iorio, PLB716,2012,334 and arxive 1308.0265. Workshop on Unruh radiation – Bielefeld – February 2015 In string breaking C. Barcelo, S. Liberati, and M. Visser, Living Rev. Rel.

65 T. Ohsaku, “Dynamical Chiral Symmetry Breaking and its Restoration for an Accelerated Observer,” Physics Letters B, Vol. 599, No. 1-2, 2004, pp. 102-110. Symmetry Restoration by Acceleration Paolo Castorina, Marco Finocchiaro Journal of Modern Physics, 2012, 3, 1703-1708

66 Why

67

68 But …

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101 For hadron production in high energy collisions, causality requirements lead to the counterpart of the cosmological horizon problem: the production occurs in a number of causally disconnected regions of finite space-time size. As a result, globally conserved quantum numbers (charge, strangeness, baryon number) must be conserved locally in spatially restricted correlation clusters. This provides a theoretical basis for the observed suppression of strangeness production in elementary interactions (pp, e+e−). In contrast, the space-time superposition of many collisions in heavy ion interactions largely removes these causality constraints, resulting in an ideal hadronic resonance gas in full equilibrium.

102


Download ppt "P. Castorina Dipartimento di Fisica ed Astronomia Università di Catania-Italy 6-10 October 2014 ECT - Trento Event horizon and entropy in high energy hadroproduction."

Similar presentations


Ads by Google