Presentation is loading. Please wait.

Presentation is loading. Please wait.

Technetium Bromides as Precursors for the Synthesis of Low-Valent Complexes F. Poineau 1, A. P. Sattelberger 2, P. Weck 1, P. Forster 1, L. Gagliardi 3,

Similar presentations


Presentation on theme: "Technetium Bromides as Precursors for the Synthesis of Low-Valent Complexes F. Poineau 1, A. P. Sattelberger 2, P. Weck 1, P. Forster 1, L. Gagliardi 3,"— Presentation transcript:

1 Technetium Bromides as Precursors for the Synthesis of Low-Valent Complexes F. Poineau 1, A. P. Sattelberger 2, P. Weck 1, P. Forster 1, L. Gagliardi 3, K. R. Czerwinski 1 1.Department of Chemistry, University of Nevada Las Vegas, Las Vegas, USA 2.Energy Sciences and Engineering Directorate, ANL, Argonne, USA 3.Department of Chemistry, University of Minnesota, Minneapolis, USA

2 Harry Reid Center, University of Nevada Las Vegas Focus on fundamental and applied research on Technetium Synthesis: Ability to work with high activity: (mg to g of 99 Tc) glove box, Schlenk line, HEPA-filtered fume hoods Characterization: Spectroscopy: UV-Vis, IR, NMR, TRFLS & XAFS Diffraction: XRD (single crystal and powder) & NPD First principles calculations Synthetic and coordination chemistry of 99 Tc -Metal-metal bonded compounds, Binary halides, and Oxides. Tc laboratory at UNLV U/Tc separation Chemistry relevant to the nuclear fuel cycle - Separation and waste forms Structure of Bi 2 Tc 2 O 7 Capabilities

3 Fundamental Chemistry of Tc 1.Metal-metal bonded dimers  Five quadruple bonded dimers are characterized: (n-Bu 4 N) 2 Tc 2 Cl 8, Tc 2 (O 2 CCMe 3 ) 4 Cl 2, Tc 2 (O 2 CMe 3 ) 4 (TcO 4 ) 2, K 2 Tc 2 (SO 4 ) 4 ·2H 2 O, Tc 2 (O 2 CMe 3 ) 2 Cl 2 (dma) 2.  No bromides characterized 2. Binary Halides  Three compounds known : TcCl 4, TcF 5 and TcF 6  No binary iodides and bromides characterized  Synthesis & characterization of Tc binary bromides and metal-metal bonded dimers  Use as precursor for synthesis of new complexes

4 I - Synthesis and characterization of binary bromides II - Synthesis and characterization of (n-Bu 4 N) 2 Tc 2 Br 8 III - Reaction : TcBr 3 and PMe 3 \NaEt 3 BH IV - Reaction : (n-Bu 4 N) 2 Tc 2 Br 8 and PMe 3

5 Binary halides of transition metals:  reaction of the metal and halogen at elevated temperature Ex: M + (3/2) Br 2 → MBr 3 (M = Ru, Re, Mo); M + 3F 2 → MF 6 ( M = Tc, Ru, Mo) 1. Synthesis of Tc metal TcO 2 NH 4 TcO 4 T = 750 ºC Ar I. Synthesis of binary bromides 2. Reaction between Tc metal and Br 2 and I 2 in sealed tube 6 hours  Iodine: No reaction  Bromine: Formation of dark crystalline compound T = 700 ºC Ar/H 2 T = 400 ºC Tc metal Glass blowing

6 Analysis by single crystal XRD - Infinite chains of edge-sharing TcBr 6 octahedra - First binary tetrabromide of group VII characterized - Isostructural to MBr 4 (M = Pt, Os) and TcCl 4. Br(1) Br(2) Tc Br(3) d(Tc-Tc)3.791d(Tc-Br(3))2.525 d(Tc-Br(1))2.395d(Tc-Br(2))2.623 For Tc:Br ~ 1:4 → Formation of TcBr 4 * Distance (Å) in TcBr 4 Large d(Tc-Tc)  no metal-metal bond *Poineau, F et al. JACS, 2009

7 For Tc:Br ~ 1:3→ Formation of TcBr 3 - Infinite chains of face-sharing TcBr 6 octahedra - First d 4 binary halide with this structure - Isostructural to MBr 3 (M = Mo, Ru) - (!) ReBr 3 : Chain of “Re 3 Br 9 ” units d(Tc1-Tc2)3.060d(Tc1-Br(A))2.489 d(Tc2-Tc1)2.915d(Tc2-Br(B))2.523 Distance (Å) in TcBr 3 Tc2 Tc1 Tc3 Br(A)Br(B) Alternation short /long d(Tc-Tc)  deformation of “TcBr 6 ” octahedra

8 First principles calculations on Tc tetrahalides Prediction of TcF 4 *, Isostructural to TcX 4 (X = Cl, Br) Synthesis: Thermal decomposition of H 2 TcF 6 TcCl 4 TcBr 4 TcF 4 ExpDFTExpDFT Tc-Tc3.623.773.943.793.32 Tc-X12.252.262.3952.411.87 Tc-X22.38 2.5252.522.02 Tc-X32.492.452.622.612.05 X1 X2 X3 *Weck, P. et al. Inorg. Chem. 2009 Distance (Å) in TcX 4

9 II. Synthesis of (n-Bu 4 N) 2 Tc 2 Br 8 (n-Bu 4 N)TcO 4 (n-Bu 4 N)TcOCl 4 (n-Bu 4 N) 2 Tc 2 Cl 8 (n-Bu 4 N) 2 Tc 2 Br 8 TcO 2 /NH 4 TcO 4 T = 80 °C, H 2 O 2 (n-Bu 4 N)OH 12 M HCl T = 0 °C (n-Bu 4 N)BH 4 THF HCl, acetone HBr gas T = 30 °C &

10 CompoundsTc-Tc (Å) (Å) (°) (n-Bu 4 N) 2 Tc 2 Br 8 ·4[(CH 3 ) 2 CO]2.1625(9)2.4734(7)105.01(3) (n-Bu 4 N) 2 Tc 2 Cl 8 2.147(4)2.320(4)103.8(4) Recrystallization from acetone / ether for single crystal XRD  Formation of an acetone solvate: (n-Bu 4 N) 2 Tc 2 Br 8. 4[(CH 3 ) 2 CO]* Tc 2 Br 8 2- ion Steric effect induced by bromide in [Tc 2 Br 8 ] 2- ion:  Increase of Tc-Tc separation and the Tc-Tc-Br angle View of the solvate from the a direction * Poineau, F et al. Dalton. Trans. 2009

11 Binary halides as precursors of low valent complexes Ex: Compounds of the type MX 2 (PMe 3 ) 4 (X = Cl, Br) III. Reaction: TcBr 3 and PMe 3 /NaEt 3 BH Nb NbCl 5 Mo MoCl 3 (THF) 3 Tc ? Ru RuCl 3 Ta TaCl 5 W WCl 4 Re ? Os (NH 4 ) 2 OsCl 6 - Metal halide reduction by Na /Hg in presence of excess PMe 3 TcBr 2 (PMe 3 ) 4 TcBr 3 Tc 2 Br 4 (PMe 3 ) 4 Technetium tribromide: reaction in THF with 30 mol xs PMe 3 and 1.3 eq. NaEt 3 BH 2. Pumping to dryness 3. Extraction and crystallization from hexane 1. Stirring 12 hours under Ar

12 Structure M 2 Br 4 (PMe 3 ) 4 Average distancesAverage angles M-MM-BrM-PM-M-BrM-M-P Tc 2 Br 4 (PMe 3 ) 4 2.1316(5)2.520(1)2.441(1)114.35(1)102.33(2) Re 2 Br 4 (PMe 3 ) 4 2.2521(3)2.5034(5)2.4201(11)113.98(1)101.05(3) A) Tc 2 Br 4 (PMe 3 ) 4 - First Tc 2 II Br 4 (PR 3 ) 4 characterized - Triple Tc-Tc bonded dimer:  2  4  2  * 2 - Isomorphous to M 2 Br 4 (PMe 3 ) 4 (M = Re, Mo) - Tc 2 Cl 4 (PR 3 ) 4 know and characterized Zinc reduction of Tc IV Cl 4 (PR 3 ) 2 in THF Tc Br C P Moving from Tc to Re: Increase of metal-metal separation.  Decrease of M-M-Br and M-M-P angles and of the M-Br and M-P distances

13 B) TcBr 2 (PMe 3 ) 4 - First M II X 2 (PMe 3 ) 4 for group VII - Isomorphous to MoBr 2 (PMe 3 ) 4 - Octahedral complex: Four equatorial PMe 3, trans-axial Br. TcMo d(Tc-Br)d(Tc-P)d(Mo-Br)d(Mo-P) MBr 2 (PMe 3 ) 4 2.5925(7)2.4214(11)2.614(1)2.515(1) M 2 Br 4 (PMe 3 ) 4 2.520(1)2.441(1)2.549(1)2.547(2) d(Tc-Br) monomer > d(Tc-Br) dimer d(Tc-P) dimer > d(Tc-P) monomer Similar phenomena for molybdenum Comparison monomer/dimer: Elongation of Tc-Br distance due to steric effect of 4 equatorial PMe 3 Elongation of Tc-P in dimer due to steric interaction Br-Me.

14 UV-Visible spectroscopy A) Tc 2 Br 4 (PMe 3 ) 4 in benzene Attribution of transition based on Time Dependant/DFT calculations

15 B) TcBr 2 (PMe 3 ) 4 in dichloromethane

16 3. Extraction and Recrystallization In hexane XRD : Tc 2 Br 4 (PMe 3 ) 4 IV. Reaction : (n-Bu 4 N) 2 Tc 2 Br 8 and PMe 3  Expected : (n-Bu 4 N) 2 Tc 2 Br 8 + xPMe 3  Tc 2 Br 8-x (PMe 3 ) x + x(n-Bu 4 N)Br Metal-metal bonded precursor of low-valent complexes Ex: (n-Bu 4 N) 2 Re 2 Cl 8 precursor to Re 2 Cl 8-x (PMe 3 ) x, (x = 2, 3, 4) 1. Five minutes under Ar 2. Pumping to dryness (n-Bu 4 N)Tc 2 Br 8 : reaction in CH 2 Cl 2 with 30 mol xs PMe 3

17 Cyclic Voltammetry in CH 2 Cl 2 /0.1 M (n-Bu 4 N)BF 4 1. Rhenium complex more readily oxidized than technetium 2. Formation of Tc 2 Br 4 (PMe 3 ) 4 + and Tc 2 Br 4 (PMe 3 ) 4 2+ core  Chemical or electrochemical synthesis of Tc 2 Br 5 (PMe 3 ) 3 and Tc 2 Br 6 (PMe 3 ) 2 Electrochemistry Working electrode: Pt disk. Ref.: Ag wire. Scan rate = 200mV.s -1 ; FeCp 2 standard.

18 Conclusion Synthesis and characterization of TcBr 3 and TcBr 4 - First Tc binary bromides. Structural characterization (n-Bu 4 N) 2 Tc 2 Br 8.4[(CH 3 ) 2 CO] - Influence of X on Tc-Tc separation in Tc 2 X 8 Reaction of TcBr 3 with PMe 3 /NaEt 3 BH  Two new complexes  TcBr 2 (PMe 3 ) 4 : First MX 2 (PMe 3 ) 4 compound of Group VII  Tc 2 Br 4 (PMe 3 ) 4 : Also synthesized from (n-Bu 4 N) 2 Tc 2 Br 8 / PMe 3 First Tc 2 X 4 (PR 3 ) 4 bromide Structural and spectroscopic studies of TcBr 2 (PMe 3 ) 4 & Tc 2 Br 4 (PMe 3 ) 4 - Influence of local geometry on metal-ligand separation. - Attribution of electronic transitions in UV-Vis spectra.

19 Perspectives Search for Tc binary halides - TcCl 3 : Thermal decomposition of Tc 2 (OCCH 3 ) 4 Cl 2 under HCl - TcF 4 : Thermal decomposition of H 2 TcF 6 under Ar New reactions using TcBr 3 as precursor - Conversion of TcBr 3 to (n-Bu 4 N) 2 Tc 2 Br 8 Optimize the synthesis of TcBr 2 (PMe 3 ) 4 and Tc 2 Br 4 (PMe 3 ) 4 - TcBr 2 (PMe 3 ) 4 : Precursor for TcBr 2 (H 2 )(PMe 3 ) 4 and TcBr 2 (C 2 H 4 )(PMe 3 ) 4 - Tc 2 Br 4 (PMe 3 ) 4 : Precursor for Tc 2 Br 6 (PMe 3 ) 2

20 Acknowledgments Tom O’Dou Health Physics Radiochemistry program at UNLV

21 Questions


Download ppt "Technetium Bromides as Precursors for the Synthesis of Low-Valent Complexes F. Poineau 1, A. P. Sattelberger 2, P. Weck 1, P. Forster 1, L. Gagliardi 3,"

Similar presentations


Ads by Google