Download presentation
Presentation is loading. Please wait.
1
MATH 31 REVIEWS Chapter 2: Derivatives
2
Chapter 2: Derivatives “ If you don't go off on a tangent while studying, you can derive a great deal of success from it. ”
3
1. Finding Derivatives from First Principles
Ex. If f(x) = 3x x , find f (x) using limits.
4
f(x) = 3x x + 1 f (x) = lim f(x+h) - f(x) h0 h
5
f(x) = 3x x + 1 f (x) = lim f(x+h) - f(x) h0 h = lim [3(x+h) (x+h) + 1] - [3x2 - 4x + 1] h0 h
6
f(x) = 3x x + 1 f (x) = lim f(x+h) - f(x) h0 h = lim [3(x+h) (x+h) + 1] - [3x2 - 4x + 1] h0 h = lim 3x2 + 6xh + 3h2 - 4x - 4h x2 + 4x - 1
7
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1
8
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1
= lim xh + 3h2 - 4h h0 h
9
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1
= lim xh + 3h2 - 4h h0 h = lim h (6x + 3h - 4)
10
f (x) = lim 3x2 + 6xh + 3h2 - 4x - 4h + 1 - 3x2 + 4x - 1
= lim xh + 3h2 - 4h h0 h = lim h (6x + 3h - 4) = lim (6x + 3h - 4) = 6x - 4 h0
11
2. Sketching Derivative Functions
Remember, the derivative represents the tangent slope of a function. Thus, the derivative function simply describes the slopes of the original function.
12
e.g. Sketch the derivative function y = f (x) y = f(x)
13
y = f(x) Horizontal slopes ...
14
y = f(x) Horizontal slopes ... y = f (x) ... become x-intercepts (f = 0)
15
y = f(x) Slope > 0 y = f (x)
16
y = f(x) Slope > 0 y = f (x) Positive y-coordinates
17
y = f(x) Slope < 0 y = f (x) Negative y-coordinates
18
Degree = 3 y = f(x) y = f (x) Degree = 2 For polynomial functions, the degree decreases by 1
19
3. Power Rule Differentiate y = 5x x x x2 x3
20
y = 5x x x x2 x3 y = 5x x x x x-3 Bring powers to the "top"
21
y = 5x x x x2 x3 y = 5x x x x x-3 y = 5 (3x2) (-1x-2) x (-3x-4) Ignore the coefficients Differentiate the powers
22
y = 5x x x x2 x3 y = 5x x x x x-3 y = 5 (3x2) (-1x-2) x (-3x-4) y = 15x x x x-4
23
y = 5x x x x2 x3 y = 5x x x x x-3 y = 5 (3x2) (-1x-2) x (-3x-4) y = 15x x x x-4 y = 15x x x x4
24
4. Product Rule Differentiate y = (4x x) (7x x ) using the product rule. No need to simplify the answer.
25
y = (4x x) (7x x ) y = (4x3 + 9x) (7x4 - 11x2 - 3) + (4x3 + 9x) (7x4 - 11x2 - 3) Product Rule: f g + f g
26
y = (4x x) (7x x ) y = (4x3 + 9x) (7x4 - 11x2 - 3) + (4x3 + 9x) (7x4 - 11x2 - 3) y = (12x2 + 9) (7x4 - 11x2 - 3) + (4x3 + 9x) (28x3 - 22x)
27
5. Quotient Rule Differentiate y = x using the quotient rule. x2 + 4x
28
y = x x2 + 4x y = (5 - 2x) (x2 + 4x) - (5 - 2x) (x2 + 4x) (x2 + 4x)2 Quotient Rule: f g f g g2
29
y = x x2 + 4x y = (5 - 2x) (x2 + 4x) - (5 - 2x) (x2 + 4x) (x2 + 4x)2 y = (-2) (x2 + 4x) - (5 - 2x) (2x + 4)
30
y = x x2 + 4x y = (5 - 2x) (x2 + 4x) - (5 - 2x) (x2 + 4x) (x2 + 4x)2 y = (-2) (x2 + 4x) - (5 - 2x) (2x + 4) y = -2x2 - 8x - (10x x2 - 8x)
31
y = -2x2 - 8x - (10x x2 - 8x) (x2 + 4x)2 y = -2x2 - 8x x x2 + 8x
32
y = -2x2 - 8x - (10x x2 - 8x) (x2 + 4x)2 y = -2x2 - 8x x x2 + 8x y = 2x x - 20 or y = 2(x2 - 5x - 10) x2 (x + 4)2
33
6. Chain Rule Differentiate y = x - 9x2
34
y = x - 9x2 y = (4 + 3x - 9x2) 1/2
35
y = x - 9x2 y = (4 + 3x - 9x2) 1/2 y = (4 + 3x - 9x2) -1/2 d (4 + 3x - 9x2) dx Derivative of the "outside function" Don't forget to find the derivative of the "inside function"
36
y = x - 9x2 y = (4 + 3x - 9x2) 1/2 y = (4 + 3x - 9x2) -1/2 d (4 + 3x - 9x2) dx y = (4 + 3x - 9x2) -1/2 (3 - 18x) 2
37
y = (4 + 3x - 9x2) -1/2 (3 - 18x) 2 y = x x - 9x2 or y = (1 - 6x)
38
7. Combination of Rules Where does the function y = (2x - 7)4 (3x + 1)6 have a horizontal tangent?
39
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1) (2x - 7)4 [(3x + 1)6] Use the product rule first
40
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1) (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) Use the chain rule next Don't forget to do the derivative of the "inside function"
41
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1) (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) = 8 (2x - 7)3 (3x + 1) (2x - 7)4 (3x + 1)5 Put both terms into the same "order"
42
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1) (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) = 8 (2x - 7)3 (3x + 1) (2x - 7)4 (3x + 1)5 = 2 (2x - 7)3 (3x + 1)5 [ 4(3x + 1) + 9(2x - 7) ] Factor out the common factors
43
y = (2x - 7)4 (3x + 1)6 y = [(2x - 7)4] (3x + 1) (2x - 7)4 [(3x + 1)6] y = 4(2x - 7)3 (2) (3x + 1)6 + (2x - 7)4 6(3x + 1)5 (3) = 8 (2x - 7)3 (3x + 1) (2x - 7)4 (3x + 1)5 = 2 (2x - 7)3 (3x + 1)5 [ 4(3x + 1) + 9(2x - 7) ] = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ]
44
y = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] When does the function have a horizontal tangent?
45
y = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] The function has a horizontal tangent when y = 0 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] = 0
46
y = 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] The function has a horizontal tangent when y = 0 2 (2x - 7)3 (3x + 1)5 [ 30x - 32 ] = 0 when 2x - 7 = 0 or 3x + 1 = 0 or 30x - 32 = 0 x = x = x = 16
47
8. Implicit Differentiation
Find y for the implicit relation x2y - 5x3 = y
48
7. Implicit Differentiation
Find y for the implicit relation x2y - 5x3 = y Remember, y is a function of x. So, you must treat it like a separate function f(x).
49
x2y - 5x3 = y (x2) y + x2 y - 15x2 = 4y3 y + 0 Product rule Chain rule
50
x2y - 5x3 = y (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y
51
x2y - 5x3 = y (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y x2 y - 4y3 y = 15x xy Get y terms on one side of the equations. All others go on the other side.
52
x2y - 5x3 = y (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y x2 y - 4y3 y = 15x xy y (x2 - 4y3) = 15x2 - 2xy Factor out the y
53
x2y - 5x3 = y (x2) y + x2 y - 15x2 = 4y3 y + 0 2x y + x2 y - 15x2 = 4y3 y x2 y - 4y3 y = 15x xy y (x2 - 4y3) = 15x2 - 2xy y = 15x2 - 2xy x2 - 4y3
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.