Download presentation
Presentation is loading. Please wait.
Published byLuke Cook Modified over 9 years ago
1
Glucose metabolism Processes –Glycolysis –Glycogenolysis –Gluconeogenesis Substrate level regulation Hormone level regulation
2
Carbohydrate metabolism Glycolysis –Breakdown of glucose to pyruvate –Provides substrate for TCA cycle Gluco-/glyco-neogenesis –Synthesis of glucose or glycogen –Storage of excess substrate Regulatory mechanisms –Allosteric –Phosphorylation
3
Glycolysis Convert Glucose to Pyruvate –Yield 2 ATP + 2 NADH per glucose –Consume 2 ATP to form 2x glyceraldehyde phosphate –Produce 2 ATP + 1 NADH per GAP Carefully controlled –12 different enzyme-catalyzed steps –Limited by phosphofructokinase –Limited by substrate availability
4
Glycolysis/Gluconeogenesis -D-Glucose-1P -D-Glucose-6P -D-Fructose-6P -D-Fructose-1,6,P2 Glyceraldehyde-3P Glycerate-1,3P2 Glycerate-3P Phosphoenolpyruvate Pyruvate phosphoglucomutase glucose-6-phosphate isomerase 6-phosphofructokinase fructose-bisphosphate aldolase fructose-1,6- bisphosphatase Glycerate-2P GAPDH phosphoglycerate kinase phosphoglycerate mutase enolase pyruvate kinase Hexose import Starch/glycogen breakdown Except for these steps, glycolysis happily runs backward. Backwards glycolysis is gluconeogenesis
5
Glycolysis: phosphorylation ATP consuming –Glucose phosphorylation by hexokinase –Fructose phosphorylation by phosphofructokinase Triose phosphate isomerase
6
Glycolysis: oxidation Pyruvate kinase –Transfer Pi to ADP –Driven by oxidative potential of 2’ O Summary –Start C 6 H 12 O 6 –End 2xC 3 H 3 O 3 –Added 0xO –Lost 6xH –Gained 2xNADH, 2xATP NADH ATP pyruvate kinase GAPDH phosphoglycerate kinase
7
Pyruvate Lactic Acid –Regenerates NAD+ –Redox neutral Ethanol –Regenerates NAD+ –Redox neutral Acetyl-CoA –Pyruvate import to mitocondria –~15 more ATP per pyruvate pyruvate 2-Hydroxyethyl- Thiamine diphosphate S-acetyldihydro- lipoyllysine Acetyl-CoA
8
Carbohydrate Transport H+, pyruvate cotransporter Halestrap & Price 1999 Major Facilitator Superfamily Monocarboxylate transporter Competition between H+ driven transport to mitochondria and NADH/H+ driven conversion to lactate Cytoplasmic NADH is also used to generate mitochondrial FADH2, coupling transport to ETC saturation “glycerol-3P shuttle”
9
Gluconeogenesis Regenerate glucose from metabolites –Mostly liver –Many glycolytic enzymes are reversible Special enzymes –Pyruvate carboxylase Generate 4-C oxaloacetate from 3-C pyruvate –Phosphoenyl pyruvate carboxykinase Swap carboxyl group for phosphate Generates 3-C phosphoenolpyruvate from OA –Fructose-1,6-bisphosphatase Generates fructose-6-phosphate Mitochondrial
10
Glycogen Glucose polysaccharide –Intracellular carbohydrate store –Easily converted to glucose Glycogenolysis –Phosphorylase generates glucose-1-P from glycogen Glycogenesis –Glycogen synthase adds UDP-glucose-1-P to glycogen
11
Substrate control of CHO metabolism Kinetic flux balance Competition for energy-related molecules –Oxaloacetate: endpoint of TCA –Pyruvate Allosteric regulation by energy-related molecules –ATP/AMP: PFK/PFP –F-1,6-BP: pyruvate kinase –Fatty acids
12
Substrate competition Oxaloacetate –Oxa + AcCoA citrate –Oxa + GTP GDP + PEP Acetyl-CoA –Oxa + AcCoA citrate –AcCoA + HCO3 MalonylCoA fatty acids –Amino acid synthesis Oxaloacetate Citrate = Phosphoenylpyruvate
13
Adenine nucleotides balance glucose breakdown PFK activity depends on ATP/AMP –Competitive binding to regulatory domain PFP activity depends on AMP/citrate ATP AMP PFKPFP Glycolysis PFKGlycolysisATP AMP PFPGlycolysisAMP
14
Pyruvate kinase Substrate cooperativity Fructose 1,6-bisphosphate Mansour & Ahlfors, 1968 +cAMP
15
Hormonal control of CHO metabolism Liver/periphery (liver/muscle) –Glucagon – glucose release –Insulin – glucose uptake System wide response –Distribution of receptors –Tissue specialization Effector systems –Glucose uptake –PFK/PFP balance
16
Systemic Regulation of Blood Sugar Pancreas – -cells:Glucose ATP--|K ATP --| depolarization Ca insulin+GABA release – -cells:GABA Cl- --|glucagon Peripheral tissues –Insulin IR PI3K GLUT4 translocation glucose uptake – PI3K PKB--|GSK--|GS Liver –Glucagon GR Gs AC PKA--|GS Glucagon Glycogenolysis (Liver) Blood glucose Insulin Glucose uptake, glycogenesis (muscle)
17
Glucagon Endocrine factor, Gs coupled receptor PLC, AC enhance glycogenolysis –Rapid secretion of glucose from liver Jiang, G. et al. Am J Physiol Endocrinol Metab 284: E671-E678 2003; doi:10.1152/ajpendo.00492.2002 PLC AC Tiedgen & Seitz, 1980 Insulin/Glucagon ratio Hepatic cAMP
18
Glucagon:Insulin Glucagon –Liver only –GPCR PLC Adenylate cyclase –Activates GP –Inhibits GS –Stimulates gluconeogenesis Insulin –Most tissues –RTK PI-3K PP1 –Activates GS –Inhibits GP –GLUT-4 translocation Glucose storage (muscle) Glucose distribution (liver)
19
Phospho-regulation of glycogen The straight activity version PKA +GP via phosphorylase kinase -GS -PP1 via G-subunit PKB +GS via GSK +PP1 via G-subunit PP1 +GS -GP PKAPKB PK PP1-G GS PP1-G GS GP PP1 GSK3 Glycogen Synthesis GP Activates Inhibits
20
Phospho-regulation of glycogen The phosphorylation story PKA +GP via phosphorylase kinase -GS -PP1 via G-subunit PKB +GS via GSK +PP1 via G-subunit PP1 +GS -GP PKAPKB PK PP1-G GS PP1-G GS GP PP1 GSK3 Glycogen Synthesis GP Phos/Increase Dephos/Decr ActiveInactive
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.