Presentation is loading. Please wait.

Presentation is loading. Please wait.

Particle Physics Probes Messengers of the Universe J. Brunner.

Similar presentations


Presentation on theme: "Particle Physics Probes Messengers of the Universe J. Brunner."— Presentation transcript:

1 Particle Physics Probes Messengers of the Universe J. Brunner

2  Only neutral, stable elementary fermion  Interact only via weak interactions (+ gravity)  Particle Physics   Access to free parameter of the Standard Model  Astronomy  Stable, neutral  straight lines, long distance  Weak interaction  penetrating power

3 ParameterNumber Quark masses6 e,µ,  masses3 Neutrino masses3 Quark mixing3+1 Lepton mixing3+1 Gauge Couplings U(1), SU(2), SU(3) 3 Higgs sector2 QCD Vacuum angle1 Total without m 19 Total with m 26 Experiments with Neutrinos allow access to 7 new parameters 20 years ago: massless neutrinos no mixing in lepton sector Dirac mass terms & mixing trivial & natural extensions

4  Weak Eigenstates are superposition of mass Eigenstates Neutrino production via CC interaction Neutrino flavour defined via charged leptons Neutrino detection via CC interaction Unobserved propagation of mass Eigenstates Equivalence to double slit experience Coherent sum Classic: incoherent sum

5  A given experiment is typically sensitive to one mixing angle an one  m 2 |  m 2 32 |~|  m 2 31 |>> |  m 2 21 |

6 How many parameters can be measured ? Related to number of fermion families N-1 mass square differences No absolute mass scale (N-1)N/2 mixing angles “many” phases

7  e see additional potential due to W-exchange in +e  +e scattering  Illustration for constant electron density n e  At resonant energy  13 maximal  A changes sign with n e via /  A changes sign with  m 2  mass hierarchy !

8  Dark matter  Dark matter might be “hot”  110 /cm 3 form hot dark matter  no need for exotic particles  Heaviest neutrino accounts for dark matter  m ~ 30 eV  Lepton mixing  Mixing angles ARE small  Lepton mixing matrix similar or identical to CKM matrix  Solar neutrino problem solved by matter solution in the interior of the sun  “SMA” solution preferred   elegant application of MSW mechanism  Atmospheric anomaly will disappear

9  Dark matter  Dark matter might be “hot”  110 /cm 3 form hot dark matter  no need for exotic particles  Heaviest neutrino accounts for dark matter  m ~ 30 eV  Lepton mixing  Mixing angles ARE small  Lepton mixing matrix similar or identical to CKM matrix  Solar neutrino problem solved by matter solution in the interior of the sun  “SMA” solution preferred   elegant application of MSW mechanism  Atmospheric anomaly will disappear wrong

10  Final results from CHORUS & NOMAD  Best sensitivity to small mixing angles  Superseded by actual measurement of these parameters  See next slides ! Excluded

11  Example for Neutrino beam line (MINOS)

12  Example of atmospheric neutrino measurement

13 SuperKamiokandeMINOS Sign unknown

14  Solar neutrino spectrum

15

16 Sign fixed, matter effects !

17  Naming/Color convention  Index 1, 2, 3 : increasing contribution of electron state  Electron, muon ta  Matter effect in sun fixes m 2 >m 1  No matter effects to measure  m 31 2  sign unconstraint  2 schemes survive ElectronMuonTau Normal hierarchy Inverted hierarchy

18

19 Daya Bay RENO

20

21 Impressive precision reached for most parameters

22 (G. Drexlin)

23 Here normal mass hierarchy is assumed

24  Absolute neutrino masses  Are Neutrinos their own anti-particles ?  Majorana versus Dirac  Sign of  m 23  mass hierarchy  Octant  23  CP phase  CP-violation in lepton sector  matter/anti-matter asymmetry in universe  Exotics  CPT violation (Lorentz invariance)  Additional families (test of unitarity, sterile )

25  Absolute neutrino masses  Are Neutrinos their own anti-particles ?  Majorana versus Dirac  Sign of  m 23  mass hierarchy  Octant  23  CP phase  CP-violation in lepton sector  matter/anti-matter asymmetry in universe  Exotics  CPT violation (Lorentz invariance)  Additional families (test of unitarity, sterile ) Beta-Decay Experiments Cosmology

26  Absolute neutrino masses  Are Neutrinos their own anti-particles ?  Majorana versus Dirac  Sign of  m 23  mass hierarchy  Octant  23  CP phase  CP-violation in lepton sector  matter/anti-matter asymmetry in universe  Exotics  CPT violation (Lorentz invariance)  Additional families (test of unitarity, sterile ) Double-Beta-Decay Experiments

27  Absolute neutrino masses  Are Neutrinos their own anti-particles ?  Majorana versus Dirac  Sign of  m 23  mass hierarchy  Octant  23  CP phase  CP-violation in lepton sector  matter/anti-matter asymmetry in universe  Exotics  CPT violation (Lorentz invariance)  Additional families (test of unitarity, sterile ) Neutrino Oscillation Experiments

28  Absolute neutrino masses  Are Neutrinos their own anti-particles ?  Majorana versus Dirac  Sign of  m 23  mass hierarchy  Octant  23  CP phase  CP-violation in lepton sector  matter/anti-matter asymmetry in universe  Exotics  CPT violation (Lorentz invariance)  Additional families (test of unitarity, sterile ) Medium term future

29  Absolute neutrino masses  Are Neutrinos their own anti-particles ?  Majorana versus Dirac  Sign of  m 23  mass hierarchy  Octant  23  CP phase  CP-violation in lepton sector  matter/anti-matter asymmetry in universe  Exotics  CPT violation (Lorentz invariance)  Additional families (test of unitarity, sterile ) Medium term future Why do we care ?

30 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb 

31 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  Color charged Q = +2/3

32 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  Color charged Q = -1/3

33 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  Color neutral Q = -1

34 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  Color neutral Q = 0

35 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  m u < m c < m t

36 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  m( e ) < m( µ ) < m(  )

37 Family Strong Electromagnetic Weak 1ude e 2csµ µ 3tb  m( e ) < m( µ ) < m(  ) ? ?

38 Family Strong Electromagnetic Weak 1ude 1 2csµ 2 3tb 3 m( 1 ) < m( 2 ) < m( 3 ) “Normal”

39 Family Strong Electromagnetic Weak 1ude 3 2csµ 1 3tb 2 m( 3 ) < m( 1 ) < m( 2 ) “Inverted”

40  Many elements well placed  Some elements successfully predicted  Gallium, Germanium, Technetium  Whole group missing !   noble gases !  Discovery of Helium challenged system  Make measurements as complete as possible !

41 If Inverted hierarchy confirmed Majorana nature of neutrinos can be tested unambigouosly !

42 ProjectNeutrino source DetectorGoalProblem NOvALBL 810 km14 kt tracking calorimeter 2  for some values of  ; 2020 Parameter degeneracy Daya Bay II Reno II Reactor 60 km50 kt liquid scintillator 3  in 2023E resolution & absolute scale PINGU / ORCAAtmosphere1-10 Mt3  in 2023E resolution Systematics INOAtmosphere50 kt magnetized iron calorimeter 3  in 2030Low statistics 10 years needed T2 Hyper Kamiokande LBL 295 km1 Mt water3  in 2030Parameter degeneracy LBNELBL 1300 km10 kt Liquid Argon 2-5  in 2030Parameter degeneracy LAGUNA Glacier LBL 2300 km20 kt Liquid Argon 5  in 2030Beam line from CERN LAGUNA LENA LBL 2300 km50 kt Liquid scintillator 5  in 2030Beam line from CERN

43 ProjectNeutrino source DetectorGoalProblem NOvALBL 810 km14 kt tracking calorimeter 2  for some values of  ; 2020 Parameter degeneracy Daya Bay II Reno II Reactor 60 km50 kt liquid scintillator 3  in 2023E resolution & absolute scale PINGU / ORCAAtmosphere1-10 Mt3  in 2023E resolution Systematics INOAtmosphere50 kt magnetized iron calorimeter 3  in 2030Low statistics 10 years needed T2 Hyper Kamiokande LBL 295 km1 Mt water3  in 2030Parameter degeneracy LBNELBL 1300 km10 kt Liquid Argon 2-5  in 2030Parameter degeneracy LAGUNA Glacier LBL 2300 km20 kt Liquid Argon 5  in 2030Beam line from CERN LAGUNA LENA LBL 2300 km50 kt Liquid scintillator 5  in 2030Beam line from CERN Fully funded Under Construction Detector & Beam Complete 2014

44  14 kt, 896 layers of scintillator (PVC & oil)  Construction complete in 2014

45  Longbaseline from Fermilab, 810 km  14mrad off-axis

46  Parameter degeneracy  Mass hierarchy  CP-Phase  Octant of  23  Optimal result after 6 years if running is shown

47 ProjectNeutrino source DetectorGoalProblem NOvALBL 810 km14 kt tracking calorimeter 2  for some values of  ; 2020 Parameter degeneracy Daya Bay II Reno II Reactor 60 km50 kt liquid scintillator 3  in 2023E resolution & absolute scale PINGU / ORCAAtmosphere1-10 Mt3  in 2023E resolution Systematics INOAtmosphere50 kt magnetized iron calorimeter 3  in 2030Low statistics 10 years needed T2 Hyper Kamiokande LBL 295 km1 Mt water3  in 2030Parameter degeneracy LBNELBL 1300 km10 kt Liquid Argon 2-5  in 2030Parameter degeneracy LAGUNA Glacier LBL 2300 km20 kt Liquid Argon 5  in 2030Beam line from CERN LAGUNA LENA LBL 2300 km50 kt Liquid scintillator 5  in 2030Beam line from CERN Moderate budget Agreement possible rather soon Feasibility studies ongoing

48

49

50

51 V. Bertin - CPPM - ARENA'08 @ Roma 70 m 450 m JunctionBox Interlink cables 40 km to shore 2500m 885 10inch PMTs 12 lines 25 storeys / line 3 PMTs / storey

52  Junction box 2001  Main cable 2002  Line 1, 2 2006  Line 3, 4, 5 01 / 2007  Line 6, 7, 8, 9, 10 12 / 2007  Line 11, 12 05 / 2008 ~70 m

53 53 Most significant cluster at: RA = ‒ 46.5°, δ = ‒ 65.0° N sig = 5 p-value = 0.026 Significance = 2.2 σ Sky map in equatorial coordinates Result compatible with the background hypothesis 3⁰ 1⁰

54 54 Dedicated study for RXJ1713 and Vela-X taking into account the cutoff in the energy spectra and source extension RXJ1713.7-3946 Vela-X ANTARES preliminary

55 55 Dashed: IceCube (IC22) Full: ANTARES (2007-2008) RXJ1713.7-3946 Combined analysis for optimal sensitivity (planned) ! IC22 versus ANT0708

56  =0.138  =0.143 2007-2010 data 863 days active time More than 2000 events ANTARES K2K Super-K MINOS 68%CL contours

57 Mar 2012 Design decision Construction 2013 2017 2011 Data taking 2015 2 km Sensitivity 3-6 times IceCube Cost 250 M€ ~ 4 km³ 57

58

59  No ASIC used  No amplitudes used  Exclusively TDC signals (time over threshold)  Combination of up to 7 PMT signals  FPGA based  Developed by CEA Saclay  5kEuro per DOM  Reduce price by using cheaper FPGA  New partner needed !

60 Available funds France 8 MEuro Netherlands 9 MEuro Romanie 3 MEuro (Italie 20 MEuro)

61  Muon (anti)neutrinos only, perfect selection  Main effect along diagonal lines : E/cos   sub-optimal but easier to get feeling for size of the effect Akhmedov, Razzaque, Smirnov : arXiv:1205.7071  E =0   =0 no syst 45.5   E =2 GeV   = 11.25˚ no syst 16.3 

62  Challenges  Resolution in neutrino energy and zenith angle  Background rejection (veto ?)  Flavour tagging Perfect knowledge of Neutrino parameters : 15  ~3000 events per year  E = 1 GeV Zenith from muon : 3   Systematic effects  Energy dependent detector acceptance  Knowledge of resolution  Earth model  Oscillation parameter uncertainties Feasibility study just started “data” normal inverted

63 ProjectNeutrino source DetectorGoalProblem NOvALBL 810 km14 kt tracking calorimeter 2  for some values of  ; 2020 Parameter degeneracy Daya Bay II Reno II Reactor 60 km50 kt liquid scintillator 3  in 2023E resolution & absolute scale PINGU / ORCAAtmosphere1-10 Mt3  in 2023E resolution Systematics INOAtmosphere50 kt magnetized iron calorimeter 3  in 2030Low statistics 10 years needed T2 Hyper Kamiokande LBL 295 km1 Mt water3  in 2030Parameter degeneracy LBNELBL 1300 km10 kt Liquid Argon 2-5  in 2030Parameter degeneracy LAGUNA Glacier LBL 2300 km20 kt Liquid Argon 5  in 2030Beam line from CERN LAGUNA LENA LBL 2300 km50 kt Liquid scintillator 5  in 2030Beam line from CERN Large budget Major investment

64  Clear signature for mass hierarchy  CP violation in reach

65

66

67  Clear measurement for 2+2 years running

68

69

70

71

72

73

74

75

76

77

78

79

80 S12^2=0.307 S23^2=0.386 (NH) S13^2=0.0241 (NH) Delta = pi


Download ppt "Particle Physics Probes Messengers of the Universe J. Brunner."

Similar presentations


Ads by Google