Download presentation
Presentation is loading. Please wait.
Published byHilary Watson Modified over 8 years ago
2
1 ENGR 254 Lecture 6 2-2-09
3
2 DeMorgan Symbol Equivalence
4
3 Likewise for OR (be sure to check errata!) FIG 4-4
5
4 DeMorgan Symbols
6
5 Definitions (Sec. 4.1.6) Literal – A variable or the complement of a variable. Example X, Y, Y’, etc. Product term – A single literal or product of literals. Example: Sum-of-products expression – A logical sum of product terms. Example: Sum term – A single literal of sum of literals. Example: Product-of-sums expression – A logical product of sum terms. Example:
7
6 Definitions Normal term – A product or sum term in which no variable appears more than once. –Example non-normal: –Example normal: Minterm (n variables) – A normal product term with n literals. Example: Maxterm (n variables) – A normal sum term with n literals. Example:
8
7 Truth table vs. minterms & maxterms
9
8 Combinational analysis XYZF 0000 0011 0101 0110 1000 1011 1100 1111 0 1 2 3 4 5 6 7
10
9 Signal expressions Multiply out: F = ((X + Y) Z) + (X Y Z) = (X Z) + (Y Z) + (X Y Z)
11
10 New circuit, same function F = X Z + Y Z + X Y Z
12
11 “Add out” logic function Circuit:
13
12 Shortcut: Symbol substitution
14
13 Different circuit, same function
15
14 Another example
16
15 Sum-of-products form AND-OR NAND-NAND
17
16 Product-of-sums form OR-AND NOR-NOR P-of-S preferred in CMOS, TTL (NAND-NAND)
18
17 Brute-force design Truth table --> canonical sum (sum of minterms) Example: prime-number detector –4-bit input, N 3 N 2 N 1 N 0 row N 3 N 2 N 1 N 0 F 0 0 0 0 0 0 1 0 0 0 1 1 2 0 0 1 0 1 3 0 0 1 1 1 4 0 1 0 0 0 5 0 1 0 1 1 6 0 1 1 0 0 7 0 1 1 1 1 8 1 0 0 0 0 9 1 0 0 1 0 10 1 0 1 0 0 11 0 0 1 1 1 12 1 1 0 0 0 13 1 1 0 1 1 14 1 1 1 0 0 15 1 1 1 1 0 F(N 3, N 2, N 1, N 0 ) = (1,2,3,5,7,11,13)
19
18 Minterm list --> canonical sum
20
19 Algebraic simplification Theorem T8, Reduce number of gates and gate inputs
21
20 Resulting circuit
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.