Download presentation
Presentation is loading. Please wait.
Published byRandall Fleming Modified over 8 years ago
1
8 October 2010http://www.physics.oregonstate.edu Eigenstates in Quantum Mechanics Corinne Manogue Tevian Dray http://physics.oregonstate.edu/portfolioswiki
2
8 October 2010http://www.physics.oregonstate.edu
3
8 October 2010http://www.physics.oregonstate.edu
4
8 October 2010http://www.physics.oregonstate.edu Outline Geometric Interpretation of Eigenvectors Eigenstates on the Ring Spherical Harmonics Spins
5
8 October 2010http://www.physics.oregonstate.edu Schrödinger’s Equation The Hamiltonian is an operator representing the energy. In undergraduate courses, it will always be given to you.
6
8 October 2010http://www.physics.oregonstate.edu Separation of Variables
7
8 October 2010http://www.physics.oregonstate.edu Eigenvalue of the Hamiltonian In undergraduate courses, the professor will always show you how to find eigenstates of the Hamiltonian.
8
8 October 2010http://www.physics.oregonstate.edu Superpositions of Eigenstates Today, I will show you several quantum systems and tell you the eigenstates. We will explore together what you can learn once you know these eigenstates.
9
8 October 2010http://www.physics.oregonstate.edu Eigenstates on the Ring
10
8 October 2010http://www.physics.oregonstate.edu Time Dependence
11
8 October 2010http://www.physics.oregonstate.edu Time Dependence
12
8 October 2010http://www.physics.oregonstate.edu Eigenstates on the Ring
13
8 October 2010http://www.physics.oregonstate.edu Eigenstates on the Sphere
14
8 October 2010http://www.physics.oregonstate.edu Spins
15
8 October 2010http://www.physics.oregonstate.edu KetFunctionMatrix Hamil- tonian Eigen- state Coeff- icient
16
8 October 2010http://www.physics.oregonstate.edu Early Quantum Mechanics Spin & Quantum Measurement –Successive Stern-Gerlach Measurements 1-D Waves –cf. classical waves on string –1-d Schrödinger—particle-in-a-box Central Forces –cf. classical orbits –3-d Schrödinger—the hydrogen atom
17
8 October 2010http://www.physics.oregonstate.edu Eigenvectors Activity Draw the initial vectors below on a single graph Operate on the initial vectors with your group's matrix and graph the transformed vectors
18
8 October 2010http://www.physics.oregonstate.edu Eigenvectors Activity Note any differences between the initial and transformed vectors. Are there any vectors which are left unchanged by your transformation? Sketch your transformed vectors on the chalkboard.
19
8 October 2010http://www.physics.oregonstate.edu Effective Activities Are short, containing approximately 3 questions. Ask different groups to apply the same technique to different examples. Involve periodic lecture/discussion with the instructor.
20
8 October 2010http://www.physics.oregonstate.edu Spin & Quantum Measurement Uses sequential Stern-Gerlach experiments as a concrete context for exploring the postulates of quantum mechanics. Probability, eigenvalues, operators, measurement, state reduction, Dirac notation, matrix mechanics, time evolution, spin precession, spin resonance, neutrino oscillations, the EPR experiment. J. S. Townsend, A Modern Approach to Quantum Mechanics (McGraw-Hill, New York, 1992).
21
8 October 2010http://www.physics.oregonstate.edu Spin & Quantum Measurement Students infer wave function from “data.” Measurement based. D. V. Schroeder and T. A. Moore, "A computer-simulated Stern- Gerlach laboratory," Am. J. Phys. 61, 798-805 (1993).
22
8 October 2010http://www.physics.oregonstate.edu 1-D Waves (Classical) Waves in electrical circuits, waves on ropes. (Quantum) Matter waves of quantum mechanics. (Math) Fourier analysis to begin the study of eigenstates.
23
8 October 2010http://www.physics.oregonstate.edu 1-D Waves Coax Cable: –Standing waves. –Traveling waves. –Wave packets. –Dispersion. –Energy. –Reflection. –Transmission. –Impedance.
24
8 October 2010http://www.physics.oregonstate.edu ODE’s vs. PDE’s
25
8 October 2010http://www.physics.oregonstate.edu Central Forces (Classical) Orbits. (Quantum) Unperturbed hydrogen atom. (Math) Special functions.
26
8 October 2010http://www.physics.oregonstate.edu Central Forces Classical Orbits & Quantum Hydrogen Atom –Use reduced mass –ODE’s PDE’s (interpretation of QM) –Use spherical symmetry to simplify equations –Conserved—Angular momentum & Energy –Effective potential –Symmetric potential but asymmetric solutions
27
8 October 2010http://www.physics.oregonstate.edu Effective Potential
28
8 October 2010http://www.physics.oregonstate.edu Central Forces—Activities Students draw potentials for 2-d air table Interactive orbits in Maple Ring (1d) Sphere (2d) Hydrogen (3d) Use color for value of probability density Time dependent superpositions
29
8 October 2010http://www.physics.oregonstate.edu Eigenstates on the Ring
30
8 October 2010http://www.physics.oregonstate.edu Using Color to Visualize Spherical Harmonics
31
8 October 2010http://www.physics.oregonstate.edu Using Color..\OSU\mathphys\mathphys\paradigm6\flatylm.mws
32
8 October 2010http://www.physics.oregonstate.edu Active Engagement Effective but Slow –Precious commodity –Use wisely Special Needs of Upper-Division Easily Over-Scheduled Can Get Out-of-Synch Short Activities Mid-Lecture Moving Rooms: awkward but possible
33
8 October 2010http://www.physics.oregonstate.edu Two Messages I.Plan for a concept to build over time. Within a single course. Across several courses.
34
8 October 2010http://www.physics.oregonstate.edu Eigenstates Preface –2-D eigenvectors in Bra-Ket notation Spin & Quantum Measurements –2 state systems 1-D Waves –Fourier series and 1-D Schrödinger Central Forces –Ring (1-D) Sphere (2-D) Hydrogen (3-D) Periodic Systems –Band Structure
35
8 October 2010http://www.physics.oregonstate.edu Two Messages I.Plan for a concept to build over time. II.Use an appropriate mixture of lecture and active engagement.
36
8 October 2010http://www.physics.oregonstate.edu Lecture vs. Activities The Instructor: –Paints big picture. –Inspires. –Covers lots fast. –Models speaking. –Models problem- solving. –Controls questions. –Makes connections. The Students: –Focus on subtleties. –Experience delight. –Slow, but in depth. –Practice speaking. –Practice problem- solving. –Control questions. –Make connections.
37
8 October 2010http://www.physics.oregonstate.edu Central Forces—Activities Students draw potentials for 2-d air table Interactive orbits in Maple Ring (1d) Sphere (2d) Hydrogen (3d) Use color for value of probability density Time dependent superpositions
38
8 October 2010http://www.physics.oregonstate.edu Physicists can’t change the problem. Physics involves the creative synthesis of multiple ideas. Physics problems may not be well-defined math problems. Physics problems don’t fit templates. Physics involves the interplay of multiple representations. –Dot product. –Words, graphs, symbols
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.