Download presentation
Presentation is loading. Please wait.
Published byAnnabelle Black Modified over 9 years ago
1
EVAT 554 OCEAN-ATMOSPHERE DYNAMICS FILTERING OF EQUATIONS OF MOTION FOR ATMOSPHERE (CONT) LECTURE 7 (Reference: Peixoto & Oort, Chapter 3,7)
2
Geostrophic Balance “Geostrophic Wind” d PGF CF V Recall from previous lecture… Exercise: under Boussinesq approximation and assumption f [constant] show Defines a ‘streamfunction’
3
Winds don’t parallel the streamfunction! under Boussinesq approximation and assumption f [constant]
4
CONVERGENCE AND DIVERGENCE Northern or Southern Hemisphere? Winds don’t parallel the streamfunction!
5
CONVERGENCE AND DIVERGENCE Northern or Southern Hemisphere? Quasigeostrophic
6
CONVERGENCE AND DIVERGENCE Northern or Southern Hemisphere? Near the surface, friction leads to horizontal convergence
7
CONVERGENCE AND DIVERGENCE Near the surface, friction leads to horizontal convergence Quasigeostrophic
8
CONVERGENCE AND DIVERGENCE Near the surface, friction leads to horizontal convergence Relationship between horizontal convergence and vertical motion Quasigeostrophic
9
Vertical Momentum Balance: Length scale: L 10 6 m, l 10 2 m Depth scale: H 10 4 m, h 10 2 m Horizontal velocity scale: u,v 10 ms -1 Vertical velocity scale: w 10 -2 ms -1 Horizontal pressure scale: p 10 mb = 1000 Pa Time Scale: L/u 10 5 s or H/w 10 6 s Radius of Earth: a=6.37x 10 6 m Coriolis parameter: f,f' 10 -4 s -1 Density of Air: 1 kg m -3 Horizontal Eddy Viscosity: H 10 -1 m 2 s -1 Vertical Eddy Viscosity: V 10 -1 m 2 s -1 10 -7 ms -2 10 -3 ms -2 10 ms -2 10 -7 ms -2
10
Vertical Momentum Balance: Length scale: L 10 6 m, l 10 2 m Depth scale: H 10 4 m, h 10 2 m Horizontal velocity scale: u,v 10 ms -1 Vertical velocity scale: w 10 -2 ms -1 Horizontal pressure scale: p 10 mb = 1000 Pa Time Scale: L/u 10 5 s or H/w 10 6 s Radius of Earth: a=6.37x 10 6 m Coriolis parameter: f,f' 10 -4 s -1 Density of Air: 1 kg m -3 Horizontal Eddy Viscosity: H 10 -1 m 2 s -1 Vertical Eddy Viscosity: V 10 -1 m 2 s -1 Hydrostatic Balance
11
Vertical Momentum Balance: ATMOSPHERIC PRESSURE Hypsometric Equation “Scale height” What’s the solution? where Hydrostatic Balance and Combining these, rearranging,
12
Vertical Momentum Balance: Hypsometric Equation rearranging where and ATMOSPHERIC PRESSURE
13
Vertical Momentum Balance: Hypsometric Equation rearranging where and
14
Vertical Momentum Balance (revisited): Length scale: L 10 6 m, l 10 2 m Depth scale: H 10 4 m, h 10 2 m Horizontal velocity scale: u,v 10 ms -1 Vertical velocity scale: w 10 -2 ms -1 Horizontal pressure scale: p 10 mb = 1000 Pa Time Scale: L/u 10 5 s or H/w 10 6 s Radius of Earth: a=6.37x 10 6 m Coriolis parameter: f,f' 10 -4 s -1 Density of Air: 1 kg m -3 Horizontal Eddy Viscosity: H 10 -1 m 2 s -1 Vertical Eddy Viscosity: V 10 -1 m 2 s -1 10 -7 ms -2 10 -3 ms -2 10 ms -2 10 -7 ms -2 ?
15
Vertical Momentum Balance (revisited): Length scale: L 10 6 m, l 10 2 m Depth scale: H 10 4 m, h 10 2 m Horizontal velocity scale: u,v 10 ms -1 Vertical velocity scale: w 10 -2 ms -1 Horizontal pressure scale: p 10 mb = 1000 Pa Time Scale: L/u 10 5 s or H/w 10 6 s Radius of Earth: a=6.37x 10 6 m Coriolis parameter: f,f' 10 -4 s -1 Density of Air: 1 kg m -3 Horizontal Eddy Viscosity: H 10 -1 m 2 s -1 Vertical Eddy Viscosity: V 10 -1 m 2 s -1 10 -7 ms -2 10 -3 ms -2 10 ms -2 10 -7 ms -2 ?
16
Vertical Momentum Balance (revisited): Consider a parcel displaced displaced from hydrostatic equilibrium: (1) (2) (2)-(1) Buoyancy Force
17
Vertical Momentum Balance (revisited): Consider a parcel displaced displaced from hydrostatic equilibrium: Buoyancy Force
18
Vertical Momentum Balance (revisited): Consider a parcel displaced displaced from hydrostatic equilibrium: Buoyancy Force
19
Vertical Momentum Balance (revisited): Now, consider the Thermodynamics: We consider parcel motion with no diffusion of heat and no fluxes of heat across the parcel boundary (Q=0): “Adiabatic” For an ideal gas we can rewrite this: [or “isentropic” (since ds/dt=Q/T)]
20
Vertical Momentum Balance (revisited): Now, consider the Thermodynamics: For an ideal gas we can rewrite this: Potential Temperature Define What is useful about this quantity? is conserved for adiabatic motion
21
Vertical Momentum Balance (revisited): Now, consider the Thermodynamics: Dry Adiabatic lapse rate for adiabatic motion But Recall Stability Properties? Assume
22
Vertical Momentum Balance (revisited): Now, consider the Thermodynamics: Recall Stability Properties? Assume Exercise: Show Thus: stable neutral unstable
23
Vertical Momentum Balance (revisited): stable neutral unstable
24
Vertical Momentum Balance (revisited): stable neutral unstable
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.