Download presentation
Presentation is loading. Please wait.
Published bySherman Rogers Modified over 9 years ago
1
David W. Embley Brigham Young University Provo, Utah, USA WoK: A Web of Knowledge
2
A Web of Pages A Web of Facts Birthdate of my great grandpa Orson Price and mileage of red Nissans, 1990 or newer Location and size of chromosome 17 US states with property crime rates above 1%
3
Fundamental questions – What is knowledge? – What are facts? – How does one know? Philosophy – Ontology – Epistemology – Logic and reasoning Toward a Web of Knowledge
4
Existence asks “What exists?” Concepts, relationships, and constraints with formal foundation Ontology
5
The nature of knowledge asks: “What is knowledge?” and “How is knowledge acquired?” Populated conceptual model Epistemology
6
Principles of valid inference – asks: “What is known?” and “What can be inferred?” For us, it answers: what can be inferred (in a formal sense) from conceptualized data. Logic and Reasoning Find price and mileage of red Nissans, 1990 or newer
8
Distill knowledge from the wealth of digital web data Annotate web pages Need a computational alembic to algorithmically turn raw symbols contained in web pages into knowledge Making this Work How? Fact Annotation … …
9
Turning Raw Symbols into Knowledge Symbols: $ 11,500 117K Nissan CD AC Data: price(11,500) mileage(117K) make(Nissan) Conceptualized data: – Car(C 123 ) has Price($11,500) – Car(C 123 ) has Mileage(117,000) – Car(C 123 ) has Make(Nissan) – Car(C 123 ) has Feature(AC) Knowledge – “Correct” facts – Provenance
10
Actualization (with Extraction Ontologies) Find me the price and mileage of all red Nissans – I want a 1990 or newer.
11
Data Extraction Demo
12
Semantic Annotation Demo
13
Free-Form Query Demo
14
Explanation: How it Works Extraction Ontologies Semantic Annotation Free-Form Query Interpretation
15
Extraction Ontologies Object sets Relationship sets Participation constraints Lexical Non-lexical Primary object set Aggregation Generalization/Specialization
16
Extraction Ontologies External Rep.: \s*[$]\s*(\d{1,3})*(\.\d{2})? Key Word Phrase Left Context: $ Data Frame: Internal Representation: float Values Key Words: ([Pp]rice)|([Cc]ost)| … Operators Operator: > Key Words: (more\s*than)|(more\s*costly)|…
17
Generality & Resiliency of Extraction Ontologies Generality: assumptions about web pages – Data rich – Narrow domain – Document types Single-record documents (hard, but doable) Multiple-record documents (harder) Records with scattered components (even harder) Resiliency: declarative – Still works when web pages change – Works for new, unseen pages in the same domain – Scalable, but takes work to declare the extraction ontology
18
Semantic Annotation
19
Free-Form Query Interpretation Parse Free-Form Query (with respect to data extraction ontology) Select Ontology Formulate Query Expression Run Query Over Semantically Annotated Data
20
Parse Free-Form Query “Find me the and of all s – I want a ”pricemileageredNissan1996or newer >= Operator
21
Select Ontology “Find me the price and mileage of all red Nissans – I want a 1996 or newer”
22
Conjunctive queries and aggregate queries Mentioned object sets are all of interest. Values and operator keywords determine conditions. – Color = “red” – Make = “Nissan” – Year >= 1996 >= Operator Formulate Query Expression
23
For Let Where Return Formulate Query Expression
24
Run Query Over Semantically Annotated Data
25
How do we create extraction ontologies? – Manual creation requires several dozen person hours – Semi-automatic creation TISP (Table Interpretation by Sibling Pages) TANGO (Table ANalysis for Generating Ontologies) Nested Schemas with Regular Expressions Synergistic Bootstrapping Form-based Information Harvesting How do we scale up? – Practicalities of technology transfer and usage – Millions of queries over zillions of facts for thousands of ontologies Great! But Problems Still Need Resolution
26
Manual Creation
28
-Library of instance recognizers -Library of lexicons
29
Automatic Annotation with TISP (Table Interpretation with Sibling Pages) Recognize tables (discard non-tables) Locate table labels Locate table values Find label/value associations
30
Recognize Tables Data Table Layout Tables (discard) Nested Data Tables
31
Locate Table Labels Examples: Identification.Gene model(s).Protein Identification.Gene model(s).2
32
Locate Table Labels Examples: Identification.Gene model(s).Gene Model Identification.Gene model(s).2 1212
33
Locate Table Values Value
34
Find Label/Value Associations Example: (Identification.Gene model(s).Protein, Identification.Gene model(s).2) = WP:CE28918 1212
35
Interpretation Technique: Sibling Page Comparison
36
Same
37
Interpretation Technique: Sibling Page Comparison Almost Same
38
Interpretation Technique: Sibling Page Comparison Different Same
39
Technique Details Unnest tables Match tables in sibling pages – “Perfect” match (table for layout discard ) – “Reasonable” match (sibling table) Determine & use table-structure pattern – Discover pattern – Pattern usage – Dynamic pattern adjustment
40
Generated RDF
41
WoK Demo (via TISP)
42
Semi-Automatic Annotation with TANGO (Table Analysis for Generating Ontologies) Recognize and normalize table information Construct mini-ontologies from tables Discover inter-ontology mappings Merge mini-ontologies into a growing ontology
43
Recognize Table Information Religion Population Albanian Roman Shi’a Sunni Country (July 2001 est.) Orthodox Muslim Catholic Muslim Muslim other Afganistan 26,813,057 15% 84% 1% Albania 3,510,484 20% 70% 10%
44
Construct Mini-Ontology Religion Population Albanian Roman Shi’a Sunni Country (July 2001 est.) Orthodox Muslim Catholic Muslim Muslim other Afganistan 26,813,057 15% 84% 1% Albania 3,510,484 20% 70% 10%
45
Discover Mappings
46
Merge
47
Bootstrapping Cost-effective and Accurate Extraction Focus on semi-structured elements first Bootstrap synergistically – Extract from semi-structured elements – Learn extraction ontologies – Extract from plain text
48
ListReader: Wrapper Induction for Lists
49
Part I: Semi-supervised
50
OCR newline First row, left to right: C. Paulson, G. Whaley, E Eastlund, B. Krohg, D. Bakken, R. Norgaard, 0. Bakken, A. Vig, newline H. Megorden, D Wynne newline Second row- Mr. See bach, D. Colligan, J. Wogsland, F Knudson, A. Hagen, R. Myhrum, R. Nienaber, J. Mittun, newline Mr. Bohnsack. newline Third row: G. Carlm, R. Reterson, K Larson, J Skatvold, A. Enckson, R Roysland, L.Johnson, L. Nystrom. newLine Fourth row: R. Kvare, H. Haugen, R. Lubken, R Larson, A. Carlson, A. Nienaber, W Ram bo I, V Hanson, K. Ny- newline newline QootLaM "leam newline newline Captain Donald "Dude" Bakken............... Right Half Back newline LeRoy "Sonny' Johnson..................,.... Lcft Half Back newline Orley Bakken...........,...........,.......... Quarter Back newline Roger Myhrum................................... Full Back newline Bill "Schnozz" Krohg.............................. Center newline Howard "Little Huby" Megorden................ Right Guard newline Royce "Shorty" Norgaard....................... Left Guard newline Eugene "Mad Russian" Easthind............... Right Tackle newline Alvin "Stuben" Hagen......................... Left Tackle newline Richard "Dick" Nienabcr........................ Right End newline James "Oakie" Wogsland.......................... Lcft End newline newline Other lettermen were- newline Glenn "Doc" Whaley newline Allen "Swede" Enckson newline James "Snooky" Mittun newline Curtis "Curt" Paulson newline Arthur "Art" Vig newline Forrest "Forry" Knudson newline Robert "Bobby" Roysland newline Page 26 newline
51
Hand Form Creation & Labeling
52
Hand Form Creation & Labeling √
53
Hand Form Creation & Labeling Donald√
54
Hand Form Creation & Labeling DonaldBakken√
55
Hand Form Creation & Labeling DonaldBakkenDude√
56
Hand Form Creation & Labeling DonaldBakkenDude Right Half Back √
57
Generate Wrapper for First Record Captain Donald "Dude" Bakken............... Right Half Back newline LeRoy "Sonny' Johnson..................,.... Lcft Half Back newline Orley Bakken...........,...........,.......... Quarter Back newline Roger Myhrum................................... Full Back newline Bill "Schnozz" Krohg.............................. Center newline Howard "Little Huby" Megorden................ Right Guard newline Royce "Shorty" Norgaard....................... Left Guard newline Eugene "Mad Russian" Easthind............... Right Tackle newline Alvin "Stuben" Hagen......................... Left Tackle newline Richard "Dick" Nienabcr........................ Right End newline James "Oakie" Wogsland.......................... Lcft End newline newline Other lettermen were- newline Glenn "Doc" Whaley newline Allen "Swede" Enckson newline James "Snooky" Mittun newline Curtis "Curt" Paulson newline Arthur "Art" Vig newline Forrest "Forry" Knudson newline Robert "Bobby" Roysland newline Page 26 newline 1. Captain, 2. Given Name, 3. Nickname, 4. Surname, 5. Position (Captain) (\w{6,6}) "(\w{4,4})" (\w{6,6}) \.{14,14} ((\w{4,5}){3,3})\n
58
Update Wrapper & Annotate Records Captain Donald "Dude" Bakken............... Right Half Back newline LeRoy "Sonny' Johnson..................,.... Lcft Half Back newline Orley Bakken...........,...........,.......... Quarter Back newline Roger Myhrum................................... Full Back newline Bill "Schnozz" Krohg.............................. Center newline Howard "Little Huby" Megorden................ Right Guard newline Royce "Shorty" Norgaard....................... Left Guard newline Eugene "Mad Russian" Easthind............... Right Tackle newline Alvin "Stuben" Hagen......................... Left Tackle newline Richard "Dick" Nienabcr........................ Right End newline James "Oakie" Wogsland.......................... Lcft End newline newline Other lettermen were- newline Glenn "Doc" Whaley newline Allen "Swede" Enckson newline James "Snooky" Mittun newline Curtis "Curt" Paulson newline Arthur "Art" Vig newline Forrest "Forry" Knudson newline Robert "Bobby" Roysland newline Page 26 newline 2. Captain, 3. Given Name, 5. Nickname, 6. Surname, 7. Position ((Captain) )?(\w{5,6})( "(\w{4,5}) ['"] )? (\w{6,7}) [\.,]{14,34} ((\w{4,7} ){2,3})\n
59
Final Wrapper and Annotation Captain Donald "Dude" Bakken............... Right Half Back newline LeRoy "Sonny' Johnson..................,.... Lcft Half Back newline Orley Bakken...........,...........,.......... Quarter Back newline Roger Myhrum................................... Full Back newline Bill "Schnozz" Krohg.............................. Center newline Howard "Little Huby" Megorden................ Right Guard newline Royce "Shorty" Norgaard....................... Left Guard newline Eugene "Mad Russian" Easthind............... Right Tackle newline Alvin "Stuben" Hagen......................... Left Tackle newline Richard "Dick" Nienabcr........................ Right End newline James "Oakie" Wogsland.......................... Lcft End newline 2. Captain, 3. Given Name, 5. Nickname, 7. Surname, 8. Position ((Captain) )?(\w{4,7})( “((\w{4,7}){1,2})['"] )? (\w{5,8} ) [\.,]{14,34} ((\w{4,7} ){1,3})\n
60
Part II: Weakly-supervised
61
Apply Extraction Ontologies
62
Find List and Generate Wrapper Base list finding on whether a wrapper can be generated. Base wrapper generation on best-labeled record.
63
Extract Synergistically from Text
65
Form Creation Basic form-construction facilities: single-entry field multiple-entry field nested form …
66
Created Sample Form
67
Generated Ontology View
68
Source-to-Form Mapping
72
Almost Ready to Harvest Need reading path: DOM-tree structure Need to resolve mapping problems – Split/Merge – Union/Selection
73
Almost Ready to Harvest … Need reading path: DOM-tree structure Need to resolve mapping problems – Split/Merge – Union/Selection Voltage-dependent anion-selective channel protein 3 VDAC-3 hVDAC3 Outer mitochondrial membrane Protein porin 3 Name
74
Almost Ready to Harvest … Need reading path: DOM-tree structure Need to resolve mapping problems – Split/Merge – Union/Selection Voltage-dependent anion-selective channel protein 3 VDAC-3 hVDAC3 Outer mitochondrial membrane Protein porin 3 Name
75
Almost Ready to Harvest … Need reading path: DOM-tree structure Need to resolve mapping problems – Split/Merge – Union/Selection Name T-complex protein 1 subunit theta TCP-1-theta CCT-theta Renal carcinoma antigen NY-REN-15
76
Almost Ready to Harvest … Need reading path: DOM-tree structure Need to resolve mapping problems – Split/Merge – Union/Selection Name T-complex protein 1 subunit theta TCP-1-theta CCT-theta Renal carcinoma antigen NY-REN-15
77
Can Now Harvest Name
78
Can Now Harvest Name 14-3-3 protein epsilon Mitochondrial import stimulation factor Lsubunit Protein kinase C inhibitor protein-1 KCIP-1 14-3-3E
79
Can Now Harvest Name Voltage-dependent anion-selective channel protein 3 VDAC-3 hVDAC3 Outer mitochondrial membrane Protein porin 3
80
Can Now Harvest Name Tryptophanyl-tRNA synthetase, mitochondrial precursor EC 6.1.1.2 Tryptophan—tRNA ligase TrpRS (Mt)TrpRS
81
Harvesting Populates Ontology
82
Also helps adjust ontology constraints
83
Can Harvest from Additional Sites Name T-complex protein 1 subunit theta TCP-1-theta CCT-theta Renal carcinoma antigen NY-REN-15
84
Automating Extraction Ontology Creation Lexicons Name 14-3-3 protein epsilon Mitochondrial import stimulation factor Lsubunit Protein kinase C inhibitor protein-1 KCIP-1 14-3-3E Name T-complex protein 1 subunit theta TCP-1-theta CCT-theta Renal carcinoma antigen NY-REN-15 Name Tryptophanyl-tRNA synthetase, mitochondrial precursor EC 6.1.1.2 Tryptophan—tRNA ligase TrpRS (Mt)TrpRS … 14-3-3 protein epsilon Mitochondrial import stimulation factor Lsubunit Protein kinase C inhibitor protein-1 KCIP-1 14-3-3E … T-complex protein 1 subunit theta TCP-1-theta CCT-theta Renal carcinoma antigen NY-REN-15 … Tryptophanyl-tRNA synthetase, mitochondrial precursor EC 6.1.1.2 Tryptophan—tRNA ligase TrpRS (Mt)TrpRS …
85
Automating Extraction Ontology Creation Instance Recognizers Number Patterns Context Keywords and Phrases
86
Automatic Source-to-Form Mapping
87
Automatic Semantic Annotation Recognize and annotate with respect to an ontology
88
Advanced free-form queries with disjunction and negation Form-based query language Table-based query languages Graphical query languages Practicalities: WoK Query Interfaces (Future Work)
89
Won’t just happen without sufficient content Niche applications – Historical Data (e.g. Genealogy) – Topical Blogs Local WoKs – Intra-organizational effort – Individual interests Practicalities: Bootstrapping the WoK (Future Work)
90
Potential Rapid growth – Thousands of ontologies – Millions of simultaneous queries – Billions of annotated pages – Trillions of facts Search-engine-like caching & query processing Practicalities: Scalability (Future Work)
91
Automatic (or near automatic) creation of extraction ontologies Automatic (or near automatic) annotation of web pages Simple but accurate query specification without specialized training Key to Success: Simplicity via Automation www.deg.byu.edu
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.