Presentation is loading. Please wait.

Presentation is loading. Please wait.

Dynamic Programming: Manhattan Tourist Problem Lecture 17.

Similar presentations


Presentation on theme: "Dynamic Programming: Manhattan Tourist Problem Lecture 17."— Presentation transcript:

1 Dynamic Programming: Manhattan Tourist Problem Lecture 17

2 Manhattan Tourist Problem (MTP)

3 Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid Sink * * * * * * * ** * * Source *

4 Manhattan Tourist Problem (MTP) Imagine seeking a path (from source to sink) to travel (only eastward and southward) with the most number of attractions (*) in the Manhattan grid Sink * * * * * * * ** * * Source *

5 Manhattan Tourist Problem: Formulation Goal: Find the longest path in a weighted grid. Input: A weighted grid G with two distinct vertices, one labeled “source” and the other labeled “sink” Output: A longest path in G from “source” to “sink”

6 MTP: An Example 324 073 33 0 132 4 4 5 6 4 6 5 5 8 2 2 5 0123 0 1 2 3 j coordinate i coordinate 13 source sink 4 3240 10 2 43 3 1 1 2 2 2 4 19 95 15 23 0 20 3 4

7 MTP: Greedy Algorithm Is Not Optimal 125 2 1 5 23 4 000 5 3 0 3 5 0 10 3 5 5 1 2 promising start, but leads to bad choices! source sink 18 22

8 MTP: Simple Recursive Program MT(n,m) if n=0 or m=0 return MT(n,m) x  MT(n-1,m)+ length of the edge from (n- 1,m) to (n,m) y  MT(n,m-1)+ length of the edge from (n,m-1) to (n,m) return max{x,y}

9 MTP: Simple Recursive Program MT(n,m) x  MT(n-1,m)+ length of the edge from (n- 1,m) to (n,m) y  MT(n,m-1)+ length of the edge from (n,m-1) to (n,m) return min{x,y} What’s wrong with this approach?

10 1 5 01 0 1 i source 1 5 S 1,0 = 5 S 0,1 = 1 Calculate optimal path score for each vertex in the graph Each vertex’s score is the maximum of the prior vertices score plus the weight of the respective edge in between MTP: Dynamic Programming j

11 MTP: Dynamic Programming (cont ’ d) 12 5 3 012 0 1 2 source 13 5 8 4 S 2,0 = 8 i S 1,1 = 4 S 0,2 = 3 3 -5 j

12 MTP: Dynamic Programming (cont ’ d) 12 5 3 0123 0 1 2 3 i source 13 5 8 8 4 0 5 8 103 5 -5 9 13 1-5 S 3,0 = 8 S 2,1 = 9 S 1,2 = 13 S 3,0 = 8 j

13 MTP: Dynamic Programming (cont ’ d) greedy alg. fails! 125 -51 3 0 5 3 0 3 5 0 10 -3 -5 0123 0 1 2 3 i source 138 5 8 8 4 9 138 9 12 S 3,1 = 9 S 2,2 = 12 S 1,3 = 8 j

14 MTP: Dynamic Programming (cont ’ d) 125 -51 33 00 5 3 0 3 5 0 10 -3 -5 2 0123 0 1 2 3 i source 138 5 8 8 4 9 138 12 9 15 9 j S 3,2 = 9 S 2,3 = 15

15 MTP: Dynamic Programming (cont ’ d) 125 -51 33 00 5 3 0 3 5 0 10 -3 -5 2 0123 0 1 2 3 i source 138 5 8 8 4 9 138 12 9 15 9 j 0 1 16 S 3,3 = 16 (showing all back-traces) Done!

16 MTP: Recurrence Computing the score for a point (i,j) by the recurrence relation: s i, j = max s i-1, j + weight of the edge between (i-1, j) and (i, j) s i, j-1 + weight of the edge between (i, j-1) and (i, j) The running time is n x m for a n by m grid (n = # of rows, m = # of columns)

17 Manhattan Is Not A Perfect Grid What about diagonals? The score at point B is given by: s B = max of s A1 + weight of the edge (A 1, B) s A2 + weight of the edge (A 2, B) s A3 + weight of the edge (A 3, B) B A3A3 A1A1 A2A2

18 Manhattan Is Not A Perfect Grid (cont ’ d) Computing the score for point x is given by the recurrence relation: s x = max of s y + weight of vertex (y, x) where y є Predecessors(x) Predecessors (x) – set of vertices that have edges leading to x The running time for a graph G(V, E) (V is the set of all vertices and E is the set of all edges) is O(E) since each edge is evaluated once

19 Traveling in the Grid The only hitch is that one must decide on the order in which visit the vertices By the time the vertex x is analyzed, the values s y for all its predecessors y should be computed – otherwise we are in trouble. We need to traverse the vertices in some order Try to find such order for a directed cycle ???

20 DAG: Directed Acyclic Graph Since Manhattan is not a perfect regular grid, we represent it as a DAG DAG for Dressing in the morning problem

21 Topological Ordering A numbering of vertices of the graph is called topological ordering of the DAG if every edge of the DAG connects a vertex with a smaller label to a vertex with a larger label In other words, if vertices are positioned on a line in an increasing order of labels then all edges go from left to right.

22 Topological ordering 2 different topological orderings of the DAG

23 Longest Path in DAG Problem Goal: Find a longest path between two vertices in a weighted DAG Input: A weighted DAG G with source and sink vertices Output: A longest path in G from source to sink

24 Longest Path in DAG: Dynamic Programming Suppose vertex v has indegree 3 and predecessors {u 1, u 2, u 3 } Longest path to v from source is: In General: s v = max u (s u + weight of edge from u to v) sv =sv = max of s u 1 + weight of edge from u 1 to v s u 2 + weight of edge from u 2 to v s u 3 + weight of edge from u 3 to v

25 Traversing the Manhattan Grid 3 different strategies: a) Column by column b) Row by row c) Along diagonals a)b) c)


Download ppt "Dynamic Programming: Manhattan Tourist Problem Lecture 17."

Similar presentations


Ads by Google