Download presentation
Presentation is loading. Please wait.
Published byScot Black Modified over 8 years ago
1
IT Infrastructure for Providing Energy-as-a-Service to Electric Vehicles Smruti R. Sarangi, Partha Dutta, and Komal Jalan IEEE TRANSACTIONS ON SMART GRID, VOL. 3, NO. 2, JUNE 2012 Prepared for SG Subgroup Meeting, UW Presented by David (Bong Jun) Choi 2012-06-07
2
Contents Overview System Model Problem Formulation Proposed System Evaluation Conclusion 2
3
Overview Challenges ▫Charging and discharging a large number of PHEVs ▫Supply and demand should closely match Lower supply: outage Higher supply: waste ▫Intermittent source of sustainable energy sources 3
4
Overview Contribution ▫“token”: currency of energy gt: generation token ct: consumption token Attributes: ID, type, gen/con, power level, duration, start and expiration time, status Energy = power *duration ▫Token entitles owner to produce or consume a certain amount of electrical energy ▫How to schedule tokens? LM: Creates and Modifies tokens TMS: “Admit and Schedule“ or “Reject” tokens 4 Token Management System (TMS) Local Module (LM)
5
Research Objective Goal: Maximize utilization Utilization = total consumption / total generation Token Utilization = total energy of the selected consTokens / total energy of the genTokens Application-Level communication protocol 5
6
Problem Formulation (1) maximizes the average utilization ▫= total energy of the selected consTokens / total energy of the genTokens. (2) for every point in the activation time of a genToken, the sum of the power levels of the packed consToken instances is less than the power level of the genToken. (3) at most one instance of each consToken is activated to genToken (no splitting) (4) binary decision variable for genToken being packed 6 time power
7
Proposed Token Management System Formulated Problem ▫Packing Problem NP-Complete ▫Not feasible to handle a large number of PHEVs Proposed ▫Heuristic algorithm Token (1) batching, (2) prioritization, and (3) splitting ▫My Opinion: “Greedy algorithm based on Priority?” Schedule based on set priority If cannot be scheduled, split and schedule again 7
8
Cons-Token Batches - Based on start time and duration - MAX_BATCH_SIZE - Reduce computation load 8 Gen-Token Queue - Prioritization -MAX_GEN_ACTIVE - Ex) FIFO, round-robin on power source, expiration times, power levels Cons-Token Queue - FIFO Dispatcher - Packs CT in GT - Packing depend on the scheduling scheme Scheduling Scheme (active genToken) - endTime - freeEnergy - random - utilization
9
Dispatcher Functions consBatch Activation ▫Packing consumption batch (cb) to genToken ▫Conditions: Power level (consBatch) < Power Level (genToken) + constraint (2) Activation period (consBatch) < validity period (genToken) Otherwise, reject genToken Replacement ▫If utility above a certain threshold no. of rejected tokens above a certain threshold ▫Then genToken replaced with a token with the highest priority 9
10
Dispatcher Functions Splitting of consBatch ▫Previously consBatch cannot split i.e., One consBatch fit into one genToken Difficult to achieve utilization close to 1 ▫Now consBatch can split i.e., different parts of consBatch fit into multiple genTokens First, schedule consBatch as a whole. If not possible, split and schedule smaller consBatches Proposes three different schemes 10
11
Splitting of ConsBatch (Scheme 1) 1-D split on time axis ▫consBatch is split into two smaller batches on the time axis ▫½ duration and validity period ▫Same power level 11
12
Splitting of ConsBatch (Scheme 2) 1-D split on power axis ▫consBatch is split into two smaller batches on the power axis ▫½ power level ▫Same duration and validity period 12
13
Splitting of ConsBatch (Scheme 3) 13
14
Effect of Token Splitting Theorem Opt (2D split) at least better than Opt (1D power split) or Opt (1D time split) Above are at least better than Opt (no split) 14
15
Evaluation Setup ▫Vehicles Number: 0 ~ 7 million ▫Power Trace: Australian Power Grid supply (5 years) 10% available for PHEVs ▫Vehicle Connectivity: following previous references Capacity: 10-15 kWh Charging Speed: 25 kW (20-30 min charging) ▫Token duration(genToken) = 8 h (no frequent on/off) duration(consToken) = 24 min ▫consBatch Size = 100 15
16
Evaluation Effect of consToken duration ▫2% best / 100% worst ▫Smaller fragments give better utilization 16
17
Evaluation Effect of Splitting Algorithm Small consTokens (5%) Effect of Splitting Algorithm Large consTokens (30%) 17 improvement
18
Evaluation Other results ▫Scheduling Small no. of PHEVs Deadline based prioritization performs best Large no. of PHEVs Power level based prioritization performs best Large number of consTokens Contention between consTokens for packing Larger power helps to pack better 18
19
Evaluation Other results ▫Validity Period Longer consToken use duration increases utilization More flexible start time (more slots) increases utilization 19
20
Conclusion First work to propose an IT infrastructure for implementing energy-as-a-service for PHEVs Presented token management system (TMS) for managing a large number of PHEVs Presented several scheduling schemes Simulation with a large number of vehicles (several million) and real supply traces 20
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.