Download presentation
Presentation is loading. Please wait.
Published byMary Small Modified over 9 years ago
1
Jag Tuli Vienna Nov 10-11, 2008 NNDC Databases and Services Jagdish Tuli* National Nuclear Data Center Brookhaven National Laboratory *Email: Tuli@bnl.gov Brookhaven Science Associates
2
Jag Tuli Vienna Nov 10-11, 2008 USNDP Web & Database Services
3
Jag Tuli Vienna Nov 10-11, 2008 Some NNDC Databases and Services ENSDF XUNDL NSR QCalc (a useful tool) NuDat
4
Jag Tuli Vienna Nov 10-11, 2008 Nuclear Structure Evaluation Research Groups Publications Journal Articles Proceedings Reports Private Communications Thesis NSR Nuclear Science References Indexing and key-wording XUNDL Raw data ENSDF Evaluated Nuclear Structure Data File Recommended Level Energies, J half-lives, decay modes. Gamma energy, intensity, multipolarity, mixing ratio, CC, etc. Education Applications Nuclear Medicine Space Radiation Other Libraries Modeling MNCP GEANT Other Publications
5
Jag Tuli Vienna Nov 10-11, 2008 Contents: Evaluated nuclear structure and decay data for all known (>3000 ) nuclei, organized into over 294 mass chains ENSDF ENSDF - www.nndc.bnl.gov/ensdf www.nndc.bnl.gov/ensdf Decay data - + + - n etc. Reaction data (HI,xn ) (p,p') (n, ), (n,xn ) Coulomb Exc. ( , '), ( ,xn ) (d,p), etc. Adopted data best values Levels: E, J , T 1/2, , Q, configurations Gammas: E , BR, M, , ICC ENSDF
6
Jag Tuli Vienna Nov 10-11, 2008 Level Properties Spin-parity Half-life Angular momentum transfer Spectroscopic factor Decay branching Static moments Shell-model or single-particle configuration Experiments in which level is seen
7
Jag Tuli Vienna Nov 10-11, 2008 Radiation Properties Placement in level scheme Energy Intensity –relative and absolute Multipolarity and mixing ratios Total internal conversion coefficients (theory) Logft values/ hindrance factors Reduced transition probability in W.u.
8
Jag Tuli Vienna Nov 10-11, 2008 ENSDF Special (horizontal) evaluations that are needed by the nuclear structure community, e.g., logft values, α- and p-decay properties, SD and magnetic rotation bands, nuclear isomers, properties of nuclei far from the line of stability, heavy and super-heavy nuclei, etc. Evaluation of decay data for nuclides that are important to various applications, e.g., in reactor calculations, homeland security, medicine, detector calibrations, nuclear waste, etc.
9
Jag Tuli Vienna Nov 10-11, 2008 ENSDF: Major Data Sources and Derivatives ENSDF Atomic Masses (Wapstra & Audi) Nuclear Science References (NSR) MIRD Contributing Databases: Derivative Databases: Derivative Publications: RADWARE MC Codes MCNPX GEANT N UBASE RIPL NuDat2 IE ORTEC & CANBERRA JANIS …
10
Jag Tuli Vienna Nov 10-11, 2008 NSR Nuclear Science References www.nndc.bnl.gov/nsr NSR (Nuclear Science References) is a bibliographic database containing nearly 200,000 nuclear science articles, indexed according to content. About 4,000 are added each year covering 80 journals as well as conference proceedings, laboratory reports, thesis and private communications. Each article included in NSR is read and assigned a number of variables that succinctly described its content. These variables, also known as keywords, are then incorporated in a database. One unique feature of NSR is the ability to selectively retrieve articles out of a vast number, satisfying a particular set of conditions. Articles can be retrieved according to: first author, author, nuclide, reaction, target, measured quantity, publication year, type of publication (primary or secondary), journal, topics, etc. NSR management resides at the NNDC, Manojeet Bhattacharya, nsr@bnl.gov. Contributions mainly from the NNDC and IAEA-NDS. All programming work done by Dave Winchell, formerly at the NNDC. nsr@bnl.gov
11
Jag Tuli Vienna Nov 10-11, 2008 Some articles contain experimental information, which can be stored in the XUNDL database (eXperimental Unevaluated Nuclear Data List). The data is stored in the ENSDF format. NSR Keywords They briefly describe the article’s content. They follow a firm set of guidelines and they strongly increase NSR search abilities. NSR Key Numbers These are 9-character long strings. The first four identify the publication year, the following two are usually the first two letters of the first author’s last name, for instance, SM for Smith. If the last two characters are numeric, the article corresponds to a primary entry. If they are not, it is a secondary entry. NSR key numbers are assigned by the NSR database manager and are unique to each article. The DOI, or Data Object Identifier, contains the link to the article. Typically, the abstract and references can be viewed for free. The whole article, in PDF format, can be accessed if you have a paid subscription to the journal.
12
Jag Tuli Vienna Nov 10-11, 2008 The “Measured” fields are of enormous help to perform ENSDF evaluations. For instance: o Selecting G-SPECTRA will allow to search for articles reporting measured gamma ray spectra, a field that has been dominant in nuclear structure research in the last 30 years. o The most common decay modes are Electron Capture (EC), Positron Emission (B+), Beta minus (B-), Isomeric Transition (IT), Alpha (A), Spontaneous Fission (SF) and Proton emission (P). By selecting on A- DECAY, we will retrieve articles dealing with alpha-decay, etc. o The study of nuclear levels at high values of angular momentum is covered by selecting HIGH-SPN. o Articles dealing with shape parameters can be retrieved by selecting DEFORMATION. o Selecting DIPOLE/QUADRUPOLE will retrieve articles reporting magnetic dipole moments/electric quadrupole moments. Warning: Do not trust NSR blindly! Some of the “Measured” fields may be more restrictive than what you think.
13
Jag Tuli Vienna Nov 10-11, 2008 Q-calc www.nndc.bnl.gov/qcalc Nuclear reaction and decay Q-values can be calculated using the Q- Calc tool, which uses the 2003 atomic mass evaluation of Audi et al., G.Audi, A.H. Wapstra, C. Thibault, Nucl. Phys. A729, 337 (2003). For a nucleus with Z protons, N neutrons and mass M(Z,N), the most common decay Q-values are: --Q( -)=M(Z,N)-M(Z+1,N- 1) Electron capture Q(EC)=M(Z,N)-M(Z- 1,N+1) ++Q( +)=M(Z,N)-M(Z- 1,N+1)– 2Me Alpha emission Q( )=M(Z,N)-M(Z-2,N- 2)-M(2,2) Proton emission Q(p)=M(Z,N)-M(Z-1,N- 1)-M(1,1) Double -Q(2 -)=M(Z,N)- M(Z+2,N-2) Double ECQ(2EC)=M(Z,N)-M(Z- 2,N+2) The neutron and proton separation energies are defined as: S(p)=-Q(p) S(n)=-Q(n)
14
Jag Tuli Vienna Nov 10-11, 2008 In ENSDF evaluation, most of the time we are interested in decay Q-values, which can be obtained by simply giving the nucleus of interest
15
Jag Tuli Vienna Nov 10-11, 2008 NuDat www.nndc.bnl.gov/nudat2 NuDat is a web application a) to present nuclear structure and decay information from ENSDF in a user-friendly way, and b) to allow users to execute complex search operations in the wealth of data contained in ENSDF. NuDat provides an interactive chart of nuclides for navigation. NuDat contents are updated regularly as evaluations are revised in ENSDF. NuDat for the web was developed by Alejandro Sonzogni, Sonzogni@bnl.gov, of the National Nuclear Data Center (NNDC), Brookhaven National Laboratory. The slides presented here are courtesy of Alejandro Sonzogni. More on www.nndc.bnl.gov/nudat2/help
16
Jag Tuli Vienna Nov 10-11, 2008 NuDat front page Chart, active area Navigation ControlsHelpSearch forms
17
Jag Tuli Vienna Nov 10-11, 2008 NuDat chart Clicking on 132Sn Basic info + links to more details Same if typing 132sn and clicking go
18
Jag Tuli Vienna Nov 10-11, 2008 NuDat chart Changing the zoom value
19
Jag Tuli Vienna Nov 10-11, 2008 NuDat chart Decay Mode colors Standard uncertainties style
20
Jag Tuli Vienna Nov 10-11, 2008
21
Jag Tuli Vienna Nov 10-11, 2008 Levels Search Search for first 2+ states in N=86 Nuclides
22
Jag Tuli Vienna Nov 10-11, 2008 Results Tool for systematic studies For more search examples, see Help file
23
Jag Tuli Vienna Nov 10-11, 2008 Decay Search
24
Jag Tuli Vienna Nov 10-11, 2008 Results Where are the electrons coming from?
25
Jag Tuli Vienna Nov 10-11, 2008
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.