Download presentation
Presentation is loading. Please wait.
Published byCody Perkins Modified over 9 years ago
1
Rendering Problem László Szirmay-Kalos
2
Image synthesis: illusion of watching real world objects Le(x,)Le(x,) pixel f r ( ’, x, ) S We(x,)We(x,) monitor Color perception Tone mapping
3
Measuring the light: Flux l Power going through a boundary [Watt] l Number of photons Spectral dependence: d
4
Color perception perception: r, g, b 400700500600 r(r( g(g( b(b( r, g, b
5
Perception of non-monochromatic light r = r d i r i i g = g d b = b d
6
Representative wavelengths r = r d i r i i r = T e i r i i ee Light propagation: Linear functional: = T e
7
Measuring the directions: 2D 2D case Direction: angle from a reference direction Directional set: angle [rad] arc of a unit circle Size: length of the arc Total size: 2
8
Measuring the directions: 3D Direction: angles , from two reference directions Directional set: solid angle [sr] area of a unit sphere Size: size of the area Total size: 4
9
Size of a solid angle dd dd dd sin d d sin d d
10
Solid angle in which a surface element is visible dA dd r d dA cos r2r2
11
Radiance: L(x, ) l Emitted power of a unit visible area in a unit solid angle [Watt/ sr/ m 2 ] dd dAdA dd L(x, ) = d dA cos d
12
Light propagation between two infinitesimal surfaces: Fundamental law of photometry dd dAdA dd dA’ ’’ r d L dA cos d L dA cos dA’ cos ’ r2r2 L emitterreceiver
13
Symmetry relation of the source and receiver dd dAdA d’d’ dA’ ’’ r d L dA cos dA’ cos ’ r2r2 =L dA’ cos ’ d ’ d’d’ emitter receiver
14
Light-surface interaction x dd w( ’,x, ) d = Pr{photon goes to d | comes from ’} ’’ Probability density of the reflection
15
Reflection of the total incoming light x dd ’’ d’d’ ref (d ) = e (d ) + in (d ’) w( ’,x, ) d in (d ’ ) ref (d )
16
Rewriting for the radiance ref (d ) = L dA cos d e (d ) = L e dA cos d in (d ’ ) = L in dA cos ’ d ’ ’’ Visibility function h(x,- L(x, ) x ’’ L in =L(h(x,- ’ , ’)
17
Substituting and dividing by dA cos d L(x, )=L e (x, )+ L(h(x,- ’ , ’) cos ’d ’ = f r ( ’,x, ) x ’’ w( ’,x, ) cos w( ’,x, ) cos Bidirectional Reflectance Distribution Function BRDF: f r ( ’,x, ) [1/sr]
18
Rendering equation L(x, )=L e (x, )+ L(h(x,- ’ , ’) f r ( ’,x, ) cos ’d ’ L = L e + L ’’ f r ( ’,x, ) h(x,- L(x, ) x ’’ L(h(x,- , )
19
Rendering equation l Fredholm integral equation of the second kind l Unknown is a function l Function space: Hilbert space, L 2 space –scalar product: L = L e + L = S u(x, ) v(x, ) cos d dx
20
Function space l Linear space (vector space) –addition, zero, multiplication by scalars l Space with norms –||u|| 2 =, ||u|| 1 =, –||u|| = max|u|, l Hilbert space: scalar product: l L 2 space: finite square integrals
21
Measuring the light: radiance Sensitivity of a measuring device: W e (y, ’ ) L(y, ’) ’’ W e (y, ’ ): effect of a light beam of unit power emitted at y in direction ’ Light beam reaches the device: 0/1 „probability” Scaling factor
22
Measured values Single beam : (d ’) W e (y, ’) = L(y, ’)cos dA d ’ W e (y, ’) Total measured value: S W e (y, ’)d S L(y, ’)W e (y, ’) cos d ’dy = = M L
23
Simple eye model r pp y ’’ ’’ yy Pupil: e pp Real world Computer screen pixel LpLp L p = e cos e p W e (y, ’)= C= e cos e p if y is visible in p and ’ points from y to e 0 otherwise
24
Simple eye model: pinhole camera L p M L = S L(y, ’)W e (y, ’) cos d ’dy y L(y, ’) C · cos · ’ · dy = p L(h(eye, p ),- p ) C · cos · e cos e /r 2 · r 2 d p /cos = p L(h(eye, p ),- p ) · C e cos e d p r pp y ’’ ’’ yy Pupil: e d ’= de cos e /r 2 d y= r 2 d p / cos Pinhole camera: e, ’ 0 Camera constant: p Proportional to the radiance!
25
Why radiance The color of a pixel is proportional to the radiance of the visible points and is independent of the distance and the orientation of the surface!! L p = p L(h(eye, p ),- p ) / p d p r pixel =L A cos d /r 2 A r 2 / cos
26
Integrating on the pixel f pixel pp d p = dp cos p /|eye-p| 2 = dp cos 3 p /f 2 d p / p dp / S p SpSp p
27
Integrating on the visible surface r pixel d p = dy cos /|eye-y| 2 = dy g(y) y
28
Measuring function S L(y, ’)W e (y, ’) cos d ’dy = = p L(h(eye, p ),- p ) / p d p = = S L(y, ’) · cos /|eye-y| 2 / p dy W e (y, ’)= ( - y eye )/|eye-y| 2 / p if y is visible in the pixel 0 otherwise g(y)
29
Potential: W(y, ’) l The direct and indirect effects in a measuring device caused by a unit beam from y at ’ l The product of scaling factor C and the probability that the photon emitted at y in ’ reaches the device y ’’
30
Duality of radiance and potential l Light propagation = emitter-receiver interaction –radiance: intensity of emission –potential: intensity of detection
31
Potential equation y ’’ C · Pr{ detection} = C · Pr{ direct detection} + C · Pr{ indirect detection} Pr{ indirect detection} = Pr{ detection from the new point | reflection to }· Pr{ reflection to } d
32
Potential equation W(y, ’)=W e (y, ’)+ W(h(y, ’ , ) f r ( ’,h(y, ’ , )cos d W = W e + ’ W y h(y, ’ ’’ f r ( ’,h(y, ’ , ) W(y, ’)
33
Measuring the light: potential Measured values of a single beam = e (d ’ ) W(y, ’) = L e (y, ’)cos dA d ’ W (y, ’) Total measured value = M’W= S W (x, )d e S L e (x, ) W(x, ) cos d dx = y ’’ e (d ’ )
34
Operators of the rendering and potential equations l Measuring a single reflection of the light: l Adjoint operators: 1 = =
35
Rendering problem: = S W e (x, ) d S L(x, ) W e (x, ) cos d dx Le(x,)Le(x,) pixel f r ( ’, x, ) S We(x,)We(x,) = L
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.