Download presentation
Presentation is loading. Please wait.
Published byDortha Morris Modified over 8 years ago
1
Introduction to Software Testing Chapter 3.6 Disjunctive Normal Form Criteria Paul Ammann & Jeff Offutt http://www.cs.gmu.edu/~offutt/softwaretest/
2
Disjunctive Normal Form Common Representation for Boolean Functions –Slightly Different Notation for Operators –Slightly Different Terminology Basics: –A literal is a clause or the negation (overstrike) of a clause Examples: a, a –A term is a set of literals connected by logical “and” “and” is denoted by adjacency instead of Examples: ab, ab, ab for a b, a ¬ b, ¬ a ¬ b –A (disjunctive normal form) predicate is a set of terms connected by “or” “or” is denoted by + instead of Examples: abc + ab + ac Terms are also called “implicants” –If a term is true, that implies the predicate is true Introduction to Software Testing (Ch 3) 2 © Ammann & Offutt
3
Implicant Coverage Obvious coverage idea: Make each implicant evaluate to “true”. –Problem: Only tests “true” cases for the predicate. –Solution: Include DNF representations for negation. Implicant Coverage (IC) : Given DNF representations of a predicate f and its negation f, for each implicant in f and f, TR contains the requirement that the implicant evaluate to true. Example: f = ab + bc f = b + ac Implicants: { ab, bc, b, ac } Possible test set: {TTF, FFT} Observation: IC is relatively weak Introduction to Software Testing (Ch 3) 3 © Ammann & Offutt
4
Improving on Implicant Coverage Additional Definitions: –A proper subterm is a term with one or more clauses removed Example: abc has 6 proper subterms: a, b, c, ab, ac, bc –A prime implicant is an implicant such that no proper subterm is also an implicant. Example: f = ab + abc Implicant ab is a prime implicant Implicant abc is not a prime implicant (due to proper subterm ac) –A redundant implicant is an implicant that can be removed without changing the value of the predicate Example: f = ab + ac + bc ab is redundant Predicate can be written: ac + bc Introduction to Software Testing (Ch 3) 4 © Ammann & Offutt
5
Unique True Points A minimal DNF representation is one with only prime, nonredundant implicants. A unique true point with respect to a given implicant is an assignment of truth values so that –the given implicant is true, and –all other implicants are false Hence a unique true point test focuses on just one implicant A minimal representation guarantees the existence of at least one unique true point for each implicant Unique True Point Coverage (UTPC) : Given minimal DNF representations of a predicate f and its negation f, TR contains a unique true point for each implicant in f and f. Introduction to Software Testing (Ch 3) 5 © Ammann & Offutt
6
Unique True Point Example Consider again: f = ab + bc f = b + ac –Implicants: { ab, bc, b, ac } –Each of these implicants is prime –None of these implicants is redundant Unique true points: –ab: {TTT} –bc: {FTF} –b: {FFF, TFF, TFT} –ac: {FTT} Note that there are three possible (minimal) tests satisfying UTPC UTPC is fairly powerful –Exponential in general, but reasonable cost for many common functions –No subsumption relation wrt any of the ACC or ICC Criteria Introduction to Software Testing (Ch 3) 6 © Ammann & Offutt
7
Near False Points A near false point with respect to a clause c in implicant i is an assignment of truth values such that f is false, but if c is negated (and all other clauses left as is), i (and hence f) evaluates to true. Relation to determination: at a near false point, c determines f –Hence we should expect relationship to ACC criteria Note that definition only mentions f, and not f. Clearly, CUTPNFP subsumes RACC Unique True Point and Near False Point Pair Coverage (CUTPNFP) : Given a minimal DNF representation of a predicate f, for each clause c in each implicant i, TR contains a unique true point for i and a near false point for c such that the points differ only in the truth value of c. Introduction to Software Testing (Ch 3) 7 © Ammann & Offutt
8
CUTPNFP Example Consider f = ab + cd –For implicant ab, we have 3 unique true points: {TTFF, TTFT, TTTF} For clause a, we can pair unique true point TTFF with near false point FTFF For clause b, we can pair unique true point TTFF with near false point TFFF –For implicant cd, we have 3 unique true points: {FFTT, FTTT, TFTT} For clause c, we can pair unique true point FFTT with near false point FFFT For clause d, we can pair unique true point FFTT with near false point FFTF CUTPNFP set: {TTFF, FFTT, TFFF, FTFF, FFTF, FFFT} –First two tests are unique true points; others are near false points Rough number of tests required: # implicants * # literals Introduction to Software Testing (Ch 3) 8 © Ammann & Offutt
9
DNF Fault Classes ENF: Expression Negation Faultf = ab+cf’ = ab+c TNF: Term Negation Faultf = ab+cf’ = ab+c TOF: Term Omission Faultf = ab+cf’ = ab LNF: Literal Negation Faultf = ab+cf’ = ab+c LRF: Literal Reference Faultf = ab + bcdf’ = ad + bcd LOF: Literal Omission Faultf = ab + cf’ = a + c LIF: Literal Insertion Faultf = ab + cf’ = ab + bc ORF+: Operator Reference Faultf = ab + cf’ = abc ORF*: Operator Reference Faultf = ab + cf’ = a + b + c Key idea is that fault classes are related with respect to testing: Test sets guaranteed to detect certain faults are also guaranteed to detect additional faults. Introduction to Software Testing (Ch 3) 9 © Ammann & Offutt
10
Fault Detection Relationships Expression Negation Fault ENF Literal Insertion Fault LIF Term Omission Fault TOF Literal Reference Fault LRF Literal Negation Fault LNF Operator Reference Fault ORF+ Literal Omission Fault LOF Term Negation Fault TNF Operator Reference Fault ORF* Introduction to Software Testing (Ch 3) 10 © Ammann & Offutt
11
Understanding The Detection Relationships Consider the TOF (Term Omission Fault) class –UTPC requires a unique true point for every implicant (term) –Hence UTPC detects all TOF faults –From the diagram, UTPC also detects: All LNF faults (Unique true point for implicant now false) All TNF faults (All true points for implicant are now false points) All ORF+ faults (Unique true points for joined terms now false) All ENF faults (Any single test detects this…) Although CUTPNFP does not subsume UTPC, CUTPNFP detects all fault classes that UTPC detects (Converse is false) Consider what this says about the notions of subsumption vs. fault detection Literature has many more powerful (and more expensive) DNF criteria –In particular, possible to detect entire fault hierarchy (MUMCUT) Introduction to Software Testing (Ch 3) 11 © Ammann & Offutt
12
Karnaugh Maps for Testing Logic Expressions Fair Warning –We use, rather than present, Karnaugh Maps –Newcomer to Karnaugh Maps probably needs a tutorial Suggestion: Google “Karnaugh Map Tutorial” Our goal: Apply Karnaugh Maps to concepts used to test logic expressions –Identify when a clause determines a predicate –Identify the negation of a predicate –Identify prime implicants and redundant implicants –Identify unique true points –Identify unique true point / near false point pairs No new material here on testing –Just fast shortcuts for concepts already presented Introduction to Software Testing (Ch 3) 12 © Ammann & Offutt
13
K-Map: A clause determines a predicate Consider the predicate: f = b + ac + ac Suppose we want to identify when b determines f The dashed line highlights where b changes value –If two cells joined by the dashed line have different values for f, then b determines f for those two cells. –b determines f: ac + ac (but NOT at ac or ac) Repeat for clauses a and c ttt1 ttt0 10110100 ab c Introduction to Software Testing (Ch 3) 13 © Ammann & Offutt
14
K-Map: Negation of a predicate Consider the predicate: f = ab + bc Draw the Karnaugh Map for the negation –Identify groups –Write down negation: f = b + a c tt1 t0 10110100 ab c tt1 ttt0 10110100 ab c Introduction to Software Testing (Ch 3) 14 © Ammann & Offutt
15
K-Map: Prime and redundant implicants Consider the predicate: f = abc + abd + abcd + abcd + acd Draw the Karnaugh Map Implicants that are not prime: abd, abcd, abcd, acd Redundant implicant: abd Prime implicants –Three: ad, bcd, abc –The last is redundant –Minimal DNF representation f = ad + bcd 01 00 10 11 0100 ab cd t t tt t t 11 10 Introduction to Software Testing (Ch 3) 15 © Ammann & Offutt
16
K-Map: Unique True Points Consider the predicate: f = ab + cd Three unique true points for ab –TTFF, TTFT, TTTF –TTTT is a true point, but not a unique true point Three unique true points for cd –FFTT, FTTT, TFTT Unique true points for f f = ac + bc + ad + bd –FTFT,TFFT, FTTF, TFTF Possible UTPC test set –f: {TTFT, FFTT} –f: {FTFT, TFFT, FTTF, TFTF} 01 00 10110100 ab cd t t tt 11 10 t t t Introduction to Software Testing (Ch 3) 16 © Ammann & Offutt
17
K-Map: Unique True Point/ Near False Point Pairs Consider the predicate: f = ab + cd For implicant ab –For a, choose UTP, NFP pair TTFF, FTFF –For b, choose UTP, NFP pair TTFT, TFFT For implicant cd –For c, choose UTP, NFP pair FFTT, FFFT –For d, choose UTP, NFP pair FFTT, FFTF Possible CUTPNFP test set –{TTFF, TTFT, FFTT //UTPs FTFF, TFFT, FFFT, FFTF} //NFPs 01 00 10110100 ab cd t t tt 11 10 t t t Introduction to Software Testing (Ch 3) 17 © Ammann & Offutt
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.