Presentation is loading. Please wait.

Presentation is loading. Please wait.

Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: September 27, 2013 Variation.

Similar presentations


Presentation on theme: "Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: September 27, 2013 Variation."— Presentation transcript:

1 Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: September 27, 2013 Variation

2 Previously Understand how to model transistor behavior Given that we know its parameters –V dd, V th, t OX, C OX, W, L, N A … Penn ESE370 Fall2013 -- DeHon 2 C GC C GCS C GCB

3 But… We don’t know its parameters (perfectly) 1.Fabrication parameters have error range 2.Identically drawn devices differ 3.Parameters change with environment (e.g. Temperature) 4.Parameters change with time (aging) Why I am more concerned with robustness than precision. Penn ESE370 Fall2013 -- DeHon 3

4 Today Sources of Variation –Fabrication –Operation –Aging Coping with Variation –Margin –Corners –Binning Penn ESE370 Fall2013 -- DeHon 4

5 Fabrication Penn ESE370 Fall2013 -- DeHon 5

6 Variation Types Many reasons why things are different –Show up in many different ways. Scales –Wafer-to-wafer, die-to-die, transistor-to- transistor Correlations –Systematic, spatial, random (uncorrelated) Penn ESE370 Fall2013 -- DeHon 6

7 7 Source: Noel Menezes, Intel ISPD2007

8 Process Shift Oxide thickness Doping level Layer alignment Growth and Etch rates and times –Depend on chemical concentrations How precisely can we control those? Vary machine-to-machine, day-to-day Impact all transistors on wafer Penn ESE370 Fall2013 -- DeHon 8

9 Systematic Spatial Parameters change consistently across wafer or chip based on location Chemical-Mechanical Polishing (CMP) –Dishing Lens distortion Penn ESE370 Fall2013 -- DeHon 9

10 FPGA Systematic Variation 65nm Virtex 5 Penn ESE370 Fall2013 -- DeHon 10 [Tuan et al. / ISQED 2010]

11 Penn ESE370 Fall2013 -- DeHon 11 Oxide Thickness [Asenov et al. TRED 2002]

12 Penn ESE370 Fall2013 -- DeHon 12 Line Edge Roughness 1.2  m and 2.4  m lines From: http://www.microtechweb.com/2d/lw_pict.htm

13 Optical Sources What is the shortest wavelength of visible light? How compare to 45nm feature size? Penn ESE370 Fall2013 -- DeHon 13

14 Penn ESE370 Fall2013 -- DeHon 14 Phase Shift Masking Source http://www.synopsys.com/Tools/Manufacturing/MaskSynthesis/PSMCreate/Pages/default.aspx Today’s chips use λ =193nm

15 Penn ESE370 Fall2013 -- DeHon 15 Line Edges (PSM) Source: http://www.solid-state.com/display_article/122066/5/none/none/Feat/Developments-in-materials-for-157nm-photoresists

16 Penn ESE370 Fall2013 -- DeHon 16 Intel 65nm SRAM (PSM) Source: http://www.intel.com/technology/itj/2008/v12i2/5-design/figures/Figure_5_lg.gif

17 Penn ESE370 Fall2013 -- DeHon 17 Statistical Dopant Placement [Bernstein et al, IBM JRD 2006]

18 Random Trans-to-Trans Random dopant fluctuation Local oxide variation Line edge roughness Etch and growth rates –Stochastic process Transistors differ from each other in random ways Penn ESE370 Fall2013 -- DeHon 18

19 Penn ESE370 Fall2013 -- DeHon 19 Source: Noel Menezes, Intel ISPD2007

20 Impact Changes parameters –W, L, t OX, V th Change transistor behavior –W? –L? –t OX ? Penn ESE370 Fall2013 -- DeHon 20

21 Example: V th Many physical effects impact V th –Doping, dimensions, roughness Behavior highly dependent on V th Penn ESE370 Fall2013 -- DeHon 21

22 Penn ESE370 Fall2013 -- DeHon 22 V th Variability @ 65nm [Bernstein et al, IBM JRD 2006]

23 Penn ESE370 Fall2013 -- DeHon 23 Impact of V th Variation? Higher V TH ? –Not drive as strongly –I d,vsat  (V gs -V TH ) –Performance?

24 Impact Performance V th  I ds  Delay (R on * C load ) Penn ESE370 Fall2013 -- DeHon 24

25 Impact of V th Variation Penn ESE370 Fall2013 -- DeHon 25 Think NMOS Vgs = Vdd

26 FPGA Logic Variation Xilinx Virtex 5 65nm Penn ESE370 Fall2013 -- DeHon 26 [Wong, FPT2007] Altera Cyclone-II 90nm [Tuan et al. / ISQED 2010]

27 Variation in 65nm FPGAs 27 [Gojman, FPGA2013] DeHon May 2013

28 LUT-to-LUT Same LAB 28 LAB (27,22) average 5% variation DeHon May 2013 [Gojman, FPGA2013]

29 Delay Map LAB (27,22) DeHon May 2013 29 [Gojman, FPGA2013]

30 Two LUT2LUT across Chip DeHon May 2013 30

31 Reduce Vdd (Cyclone IV 60nm LP) DeHon May 2013 31 [Gojman, FPGA2013]

32 Penn ESE370 Fall2013 -- DeHon 32 Impact of V th Variation? Lower V TH ? –Not turn off as well  leaks more

33 Penn ESE370 Fall2013 -- DeHon 33 Borkar (Intel) Micro 37 (2004) 2004

34 Operation Temperature Voltage Penn ESE370 Fall2013 -- DeHon 34

35 Temperature Changes Different ambient environments –January in Maine –July in Philly –Air conditioned machine room Self heat from activity of chip Quality of heat sink (attachment thereof) Penn ESE370 Fall2013 -- DeHon 35

36 Self Heating Penn ESE370 Fall2013 -- DeHon 36 Borkar (Intel) Micro 37 (2004)

37 Thermal Profile for Processor Penn ESE370 Fall2013 -- DeHon 37 [Reda/IEEE Tr Emerging CAS v1n2 2011]

38 How does temperature impact on-current? High temperature –More free thermal energy Easier to conduct Lowers V th –Increase rate of collision Lower saturation velocity Lower saturation voltage Lower peak I ds  slows down One reason don’t want chips to run hot Penn ESE370 Fall2013 -- DeHon 38

39 Temperature and I ds Penn ESE370 Fall2013 -- DeHon 39

40 How does temperature impact leakage current? High temperature Lowers V th Penn ESE370 Fall2013 -- DeHon 40

41 Voltage Power supply isn’t perfect Differs from design to design –Board to board? –How precise is regulator? IR-drop in distribution Bounce with current spikes Penn ESE370 Fall2013 -- DeHon 41

42 Aging Hot Carrier NBTI Penn ESE370 Fall2013 -- DeHon 42

43 Hot Carriers Trap electrons in oxide –Also shifts V th Penn ESE370 Fall2013 -- DeHon 43

44 NBTI Negative Bias Temperature Instability –Interface traps, Holes Long-term negative gate-source voltage –Affects PFET most Increase V th Partially recoverable? Temperature dependent Penn ESE370 Fall2013 -- DeHon 44 [Stott, FPGA2010] Another reason not to run hot.

45 Measured Accelerated Aging (Cyclone III, 65nm FPGA) Penn ESE370 Fall2013 -- DeHon 45 [Stott, FPGA2010]

46 Coping with Variation Penn ESE370 Fall2013 -- DeHon 46

47 Variation See a range of parameters –L: L min – L max –V th : V th,min – V th,max Penn ESE370 Fall2013 -- DeHon 47

48 Penn ESE370 Fall2013 -- DeHon 48 Impact of V th Variation Higher V TH –Not drive as strongly –I d,vsat  (V gs -V TH ) Lower V TH –Not turn off as well  leaks more

49 Penn ESE370 Fall2013 -- DeHon 49 Variation Margin for expected variation Must assume V th can be any value in range –Speed  assume V th slowest value Probability Distribution V TH I on,min =I on (V th,max ) I d,vsat  (V gs -V th )

50 Gaussian Distribution Penn ESE370 Fall2013 -- DeHon 50 From: http://en.wikipedia.org/wiki/File:Standard_deviation_diagram.svg

51 Impact Given –V th,nom = 250mV –Sigma 25mV Probability of 100 transistor circuit in range when each has 96% prob. ? …when each has 99.8% probability? Penn ESE370 Fall2013 -- DeHon 51

52 Impact Given –V th,nom = 250mV –Sigma 25mV What maximum V th should expect to see for a circuit of –100 transistors? –1000 transistors? –10 9 transistors? Penn ESE370 Fall2013 -- DeHon 52

53 Variation See a range of parameters –L: L min – L max –V th : V th,min – V th,max Validate design at extremes –Work for both V th,min and V th,max ? –Design for worst-case scenario Penn ESE370 Fall2013 -- DeHon 53

54 Margining Also margin for –Temperature –Voltage –Aging: end-of-life Penn ESE370 Fall2013 -- DeHon 54

55 Process Corners Many effects independent Many parameters With N parameters, –Look only at extreme ends (low, high) –How many cases? Try to identify the {worst,best} set of parameters –Slow corner of design space, fast corner Use corners to bracket behavior Penn ESE370 Fall2013 -- DeHon 55

56 Simple Corner Example Penn ESE370 Fall2013 -- DeHon 56 Vthp Vthn 150mV 350mV What happens at various corners?

57 Process Corners Many effects independent Many parameters Try to identify the {worst,best} set of parameters –E.g. Lump together things that make slow Vthn, Vthp, temperature, Voltage Try to reduce number of unique corners –Slow corner of design space Use corners to bracket behavior Penn ESE370 Fall2013 -- DeHon 57

58 Range of Behavior Still get range of performances Any way to exploit the fact some are faster? Penn ESE370 Fall2013 -- DeHon 58 Probability Distribution Delay

59 Penn ESE370 Fall2013 -- DeHon 59 Speed Binning Probability Distribution Delay Discard Sell Premium Sell nominal Sell cheap

60 Idea Parameters Approximate Differ –Chip-to-chip, transistor-to-transistor, over time Robust design accommodates –Tolerance and Margins –Doesn’t depend on precise behavior Penn ESE370 Fall2013 -- DeHon 60

61 Midterm 1 Contents should not be a surprise –Identify CMOS/non-CMOS –Identify CMOS function –Any logic function  CMOS gate –Noise Margins –Circuit quasistatic configuration and switching delay Penn ESE370 Fall2013 -- DeHon 61

62 Admin Midterm Monday –7—9pm in Towne 309 Previous midterm –Solutions linked to 2010--2012 syllabus But only one midterm in 2010 so parts more advanced than where we are now Review on Sunday –5:30pm Penn ESE370 Fall2013 -- DeHon 62


Download ppt "Penn ESE370 Fall2013 -- DeHon 1 ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 13: September 27, 2013 Variation."

Similar presentations


Ads by Google