Presentation is loading. Please wait.

Presentation is loading. Please wait.

106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements.

Similar presentations


Presentation on theme: "106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements."— Presentation transcript:

1 106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements For JINR: Yu.Oganessian

2 1.Short Introduction 2.The “Island of Stability” of SHE 3.Test of nuclear models 4.Beyond the Periodic Table 5.Setting of the Z=117-experiment 6.Our efforts CONTENT

3 cold fusion about 25 years Act+ 48 Ca from 2000 Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

4 Gas-Filled Recoil Separator Transmission for: EVR 35-40% target-like 10 -4 -10 -7 projectile-like 10 15 -10 17 Registration efficiency: for α-particles 87% for SF single fragment 100% two fragments ≈ 40% Targets: Isotopes of U, Pu, Am, Cm and Cf (now Bk) Beam: 48 Ca Experimental technique

5 Act. + 48 Ca Target materials producer Isotope enrichment (%) 233 U IAR 99.97 238 U — 99.3 237 Np IAR 99.3 242 Pu IAR 99.98 244 Pu ORNL 98.6 243 Am IAR / ORNL 99.9 245 Cm IAR 98.7 248 Cm ORNL / IAR 97.4 249 Bk ORNL ≥ 95 249 Cf ORNL / IAR 97.3 Projectiles 48 Ca produced by Heavy Ion Accelerator U - 400 Energy: 235-250 MeV Intensity: 1.0-1.5 pμA Consumption: 0.5-0.8 mg/h Beam dose: (0.3-3.0)∙10 19 Reactions of Synthesis

6 243 Am 242 Pu, 245 Cm 226 Ra Sg/266 0.2 s Hs/270 10 s 9.06  σ 4n ≈ 10pb 237 Np 244 Pu, 248 Cm 249 Cf Decay chains Decay chains 34 nuclides 48 Ca + T 1/2 = 320d 164 104/270 105/270 107/274 109/278 111/282 113/286 115/290 117/294 103/266 102/266 107/273 109/277 105/269 111/281 113/285 115/289 117/293 104/269 249 Bk + 48 Ca 2009-2010 Collaboration: FLNR (Dubna) ORNL (Oak-Ridge) LLNL (Livermore) IAR (Dmitrovgrad) Vanderbilt University (Nashville)

7 Decay Properties of SH- nuclei

8 Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

9 Spontaneous fission half-lives Actinides Trans-actinides Superheavy nuclei

10 Half lives of nuclei with Z ≥ 110 N=162 Half lives Act. + 48 Ca

11 With Z >40% larger than that of Bi, the heaviest stable element, that is an impressive extension in nuclear survival. Although the SHN are at the limits of Coulomb stability, shell stabilization lowers: the ground-state energy, creates a fission barrier, and thereby enables the SHN to exist. The fundamentals of the modern theory concerning the mass limits of nuclear matter have been verified experimentally for the first time Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

12 Element 120 Test of nuclear models

13 MMM HFB RMF Microscopic theory and the properties of heaviest nuclei Microscopic theory and the properties of heaviest nuclei

14 116(exp) 298,299 120 EVR 3μs3μs 0.03s Z=116 Z=120 Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

15 3n 251 Cf ( α /898y) 238 U + 64 Ni GSI 2008 244 Pu + 58 Fe FLNR 2007 248 Cm + 54 Cr GSI 2010 252 Cf + 50 Ti ( α,SF/2.6y)

16 Cold fusion cross sections and fusion probability 1 event / year SHE E x =12-15 MeV Cold fusion Act.+ 48 Ca Z=112-118 249 Bk+ 48 Ca 251 Cf+ 50 Ti 248 Cm+ 54 Cr 244 Pu+ 58 Fe 238 U+ 64 Ni ~ 0.05-0.1pb Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

17 Beyond the Periodic Table

18 Chemical properties Chemical properties 14 12 Ca 20 Pu 94 Rn relativistic C h e m i c a l i s o l a t i o n 80 Hg 48 Cd 86

19 Reaction: 242 Pu (48 Ca,3n) 287 114 [0.5s ]→α→ 283 112 [3.6s ] R. Eichler et al., Nature 447 (2007) 72 Compound Hg(Au) and 112(Au) Compound Hg(Au) and 112(Au) Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

20 Atomic properties Hg Pb critical SHE 112 114

21 more and more inert? Periodic Table of Elements 249 Bk( 320d ) + 48 Ca 243 Am( 7370y ) + 48 Ca Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

22 Isotopes of Element 113 209 Bi + 70 Zn RIKEN (Tokyo) 0.24ms σ =0.03pb 243 Am + 48 Ca 237 Np + 48 Ca 243 Am + 48 Ca half-life JINR (Dubna) - - LLNL (Livermore) - - ORNL (Oak-Ridge) collaboration 0.07s0.5s10s σ =4.2pb Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

23 rotating target entrance window beam RECOILS q=q eq pumping acceleration RF RF+E RF q=1+ He H 2 +B stopping volume E separating window GAS CATCHER Guy Savard from Argonne National Laboratory beam of high quality Δt = 20-50 ms transmission ≈ 50%

24 Mass Analyzer of Super Heavy Atoms (MASHA) Transmission for Hg-atoms ≈ 75% Mass measurements gas catcher intermediate focus Position of the detector array magnetic deflection electrostatic deflection M / M 3500 

25 Periodic Table of Elements 251 Cf + 48 Ca 3ms 118 254 Es + 48 Ca 1ms 119

26 Setting an Experiment on the Synthesis of Setting an Experiment on the Synthesis of Element 117

27 Reaction: 249 Bk + 48 Ca → 297 117 * → 294-293 117 + 3-4n T 1/2 =320d high intensity of 48 Ca beam (~1.5 pμA) U- 400 FLNR, JINR Separation, Detection & Identification 1 SH-atom / 10 12 reaction products DGFRS Dubna Gas-filled Recoil Separator high neutron flux HIFR, ORNL chemical separation from 252 Cf (factor 10 11 ) target preparation 36cm 2 0.25 μm BkO 2 + 1.6 μmTi IAR, Dimitrovgrad Yu.Oganessian. Perspectives of JINR – ORNL Collaboration in the studies of SHE. JINR Scientific Council, Sept 24-25. 2009, Dubna

28 22 mg of 249 Bk have been produced with neutrons of HIFR ORNL

29 Expected decay chain of the isotopes of element 117 A. Sobiczewski 10/24.03.09 270 274 269 105 107 7.71 MeV 8.42 MeV 7.94 MeV 6.55 MeV 6.41 MeV 4.8h 5.1min 0.7h SF 5.9y27y 266265 266 103 102

30 Cross sections 117 249 Bk + 48 Ca

31 Gain factors for production of Super-heavy nuclei

32 In theory:from macroscopic (liquid drop) to microscopic (microscopic models) Checking models In accelerators from light ions 12 C- 16 O to massive one 48 Ca- 136 Xe new cyclotrons, ECR sources, etc to higher intensity new acceleratorors In method:from slow techniques wheels, He-jet to fast in-flight separators recoil separators to on-line separator gas catcher In the sensitivity: from the cross sections ≥ 10,000pb to the cross sections ≥ 0,5pb to the cross sections ≥ 0,05pb In the chemistry: from Actinidesto Trans-Actinidesto Superhavy Elements All these tasks took us about 40 years Now we would like to have it in 6 years! In order to understand the limits in the existence of the elements we had to move:

33 Thanks for your attention

34 Cross sections 117

35 T ads 100 0 100  C Hg 112 rel 112 nr Rn Localized adsorption (gold): Mobile adsorption (quartz): T ads of Hg and Element 112 on Quartz and Gold T ads 100 0 100  C V. Pershina 2006 Predictions Exp.2007 Quartz Gold


Download ppt "106 th Session of the JINR Scientific Council September 24-25, 2009, Dubna Perspectives of JINR – ORNL Collaboration in the Studies of Superheavy Elements."

Similar presentations


Ads by Google