Presentation is loading. Please wait.

Presentation is loading. Please wait.

Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status.

Similar presentations


Presentation on theme: "Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status."— Presentation transcript:

1 Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status

2 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 2 CBM (Compressed Baryonic Matter) net-baryon density created in central Au+Au

3 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 3 Diagram fazowy QCD

4 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 4 QCD Phase Diagram scan with A+A collisions Y.B Ivanov et al., Phys. Rev. C 73, 044904 (2006) 3 component hydrodynamics + hadron gas EOS: Critical Point reached at trajectory for ~30 AGeV (  s NN =7.74) Phase Boundary reached already at ~10 AGeV (  s NN =4.72)

5 How to explore interesting regions of the QCD Phase Diagram Lattice QCD calculations: Fedor & Katz, Ejiri et al. Freeze-out phase can be studied by measurement of „soft” hadrons production (bulk observables) Information about earlier phases is carried by rare probes: High p T particles Particles decaying into leptons Particles build up of heavy quarks (  J/ψ, D, Λ c....) and by collective motion (flow) of the created soft medium. (e.g. v 2 is sensitive to the quanta interaction just after the medium formation) large advantage from simultaneous flow measurement of “ordinary” hadrons and rare probes

6 Future projects to explore phase diagram at large   RHIC energy-scan................................ bulk observables NA61@SPSNA61@SPS......................................... bulk observables MPD@NICA........................................ bulk observables CBM@FAIR........................................ bulk and rare observables

7 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 7 Experymental arguments for Phase Transition at low SPS energy NA49 (QM 2004) ‏ None monotonic behaviour of K + /  + ratio Effective temperature shows plateau in the range of SPS energy

8 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 8 Kaon spectra versus hadronic models UrQMD and HSD models can describe p+p and light Ion data (C+C). Description of kaon spectra in central Au+Au and Pb+Pb requires contribution from strong parton- parton interactions in the early phase E. Bratkovskaya et al. PRL 92, 032302 (2004)

9 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 9 Hadrons in dense medium (->  +  - ) NA60, Nucl. Phys. A 774 (2006) 67 broadening of   spectral function (Rapp-Wambach) contradiction with mass drop scenario (Brown-Rho scaling) excess by factor of 4 over the “cocktail” with 25% systematic uncertainty !

10 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 10 Updates on  +  - results Good pair excess description for M > 1 GeV assuming thermal QGP (q+qbar →      contribution J. Rappert et al. PLB 100, 162301 (2008) For M up to ~0.9 MeV T eff scales with M → radial flow on hadronic level For M > 1 GeV partonic contribution

11 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 11 Open charm in dense medium A. Mishra et al., Phys. Rev. C 69, 015202 (2004) Reduction in the effective mass of D-meson can open D-Dbar decay channel for charmonium states → possible scenario for the J/Ψ suppression, CBM=> simultaneous measurement of J/Ψ and D-mesons

12 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 12 J/Ψ suppression Anomalous J/ψ suppresion (AS) on SPS, L – effective path in medium NA50, QM 2005 NA60 evidenced same effect in In+In Better scaling is obtained in N part ; onset already at N part ~90, At lower energies (larger μ B ) one can expect onset of AS for more central collisions → dependency on energy density and μ B Important measurement of open charm to verify other scenarios

13 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 13 Event-by-event fluctuations [NA49 collaboration, arXiv:0810.5580v2 [nucl-ex]]arXiv:0810.5580v2 observation might become enormously difficult correlation length  of sigma field, may become rather small for a finite lifetime of the fireball large acceptance needed! [Stephanov, Rajagopal, Shuryak, PRD60, 114028 (1999)] f luctuations, correlations with large acceptance and particle identification K. Grebieszków on Thursday

14 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 14 CBM: Physics topics and Observables Onset of chiral symmetry restoration at high  B and tracing medium properties in time in-medium modifications of hadrons ( , ,   e + e - (μ + μ - ), D ) Deconfinement phase transition at high  B excitation function and flow of strangeness (K,  ) excitation function and flow of charm (J/ψ, ψ', D 0, D ,  c ) charmonium suppression, sequential for J/ψ and ψ' ? corelated with open charm ? The equation-of-state at high  B collective flow of hadrons particle production at threshold energies (open charm) QCD critical endpoint excitation function of event-by-event fluctuations (K/π,...) predictions? clear signatures? → be prepared to measure "everything": bulk particles and rare probes → probing medium with known overall characteristics → systematic studies! (pp, pA, AA, energy)

15 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 15 CBM Detector (->e + e - ) TRDs (4,6,8 m)‏ STS ( 5 – 100 cm)‏

16 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 16 CBM Detector (->  +  - ) beam ABSORBER (1,5 m)‏ TRDs (4,6,8 m)‏ TOF (10 m)‏ ECAL (12 m)‏ STS ( 5 – 100 cm)‏ magnet PSD (~15 m)‏

17 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 17 Silicon Tracking System – heart of CBM Challenge: high track density:  600 charged particles in  25 o @10MHz Tasks: track reconstruction: 0.1 GeV/c < p  10-12 GeV/c  p/p ~ 1% (p=1 GeV/c) primary and secondary vertex reconstruction (resolution  50  m) V 0 track pattern recognition c  = 312  m radiation hard and fast silicon pixel and strip detectors self triggered FEE high speed DAQ and trigger online track reconstruction!

18 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 18 Silicon Tracking Performance momentum resolution 1.3% (tracks pointing to primary vertex) [%] p [GeV/c] central Au+Au 25 AGeV (UrQMD) 700 reconstructed tracks X-Z view Y-X view <1 % ghost tracks 96% [%] p [GeV/c] reconstruction efficiency momentum resolution Cellular Automaton and Kalman Filter, 50 ms on Pentium 4 A. Bubak, 19:40 on Wednesday

19 Hyperons: PID from decay topology in STS  

20 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 20 Simulation: bulk particles and hyperons ‏ incl. TOF 1035 AGeV Λ Ξ Ω

21 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 21 ρ,ω,φρ,ω,φ ρ, ω, φ J/ψ, ψ' Signal and background yields from physics event generators (HSD, UrQMD) Full event reconstruction based on realistic detector layout and response Feasibility studies for dilepton measurements Electron id: RICH and TRD Muon id: segmented hadron absorber + tracking system 125(225) cm iron, 15(18) det. layers π suppression: factor 10 4 dominant background: e from π 0 Dalitz 125 cm Fe: 0.25 ident.  /event dominant background: μ from π, K decay (0.13/event) J/ψ 200k events 4  10 10 events 4  10 8 events 3.8  10 10 events

22 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 22  STS: 8 stations double-sided Silicon micro-strip sensors (8  0.4% X 0 )  MVD: 2 stations MAPS pixel sensors (0.3% X 0, 0.5% X 0 ) at z = 5cm and 10cm  no K and π identification, proton rejection via TOF ~ 12k D + + 26k D - 10 weeks data taking reduced interaction rate 10 5 /s: Open charm measurement D  → K π π, cτ= 317 μm 10 9 centr. ev. eff = 2.6% S/B = 2.4 (D - ) 1.1 (D + ) D 0 → K π, cτ= 123 μm 10 10 centr. ev. eff = 4.4% S/B = 6.4 (D 0 ) 2.1 (D 0 ) _ and ~ 7k D 0 + 20k D 0

23 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 23 Performance summary Maximum beam intensity: 10 9 ions/s 10 weeks of Au-beam at 25 AGeV beam energy Minimum bias collisions can be recorded with 25kHz → unlimited statistics for bulk observables (K,  ) → 10 6  mesons, 10 8 , 10 6  (spectra, flow, correlations, fluctuations) Open charm trigger will allow for 100kHz → 10 4 open charm hadrons Charmonium trigger with max. beam intensity: 10MHz → 10 6 J/   (charm production, spectra, flow measurement)

24 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 24 Status CBM Collaboration undergoes (phase) transition simulation → prototyping

25 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 25 Double and triple GEM detectors 2 Double-sided silicon microstrip detectors Radiation tolerance studies for readout electronics Full readout and analysis chain: Front-end board with self-triggering n-XYTER chip Readout controller Data Acquisition System online offline Go4Go4 Analysis Detector signals Successful test of CBM prototype detector systems with free-streaming read-out electronics using proton beams at GSI, September 28-30, 2008 GSI and AGH Krakow VECC Kolkata KIP Heidelberg

26 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 26 CBM hardware R&D RICH mirror n-XYTER FEB Silicon microstrip detector MVD: Cryogenic operation in vacuum RPC R&D Forward Calorimeter GEM dipole magnet

27 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 27 90 pages, available at www.gsi.de/fair/experiments/CBM CBM Progress Report 2008 Content: Micro Vertex Detector Silicon Tracking System Ring Imaging Cherenkov Detector Muon System Transition Radiation Detectors Resistive Plate Chambers Calorimeters Magnet FEE and DAQ Physics Performance Software and Algorithms

28 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 28 CBM Collaboration China: Tsinghua Univ., Beijing CCNU Wuhan USTC Hefei Croatia: University of Split RBI, Zagreb Portugal: LIP Coimbra Romania: NIPNE Bucharest Bucharest University Poland: Krakow Univ. Warsaw Univ. Silesia Univ. Katowice Kraków AGH (Inst. Nucl. Phys. Krakow)‏ LIT, JINR Dubna MEPHI Moscow Obninsk State Univ. PNPI Gatchina SINP, Moscow State Univ. St. Petersburg Polytec. U. Ukraine: INR, Kiev Shevchenko Univ., Kiev Univ. Mannheim Univ. Münster FZ Rossendorf GSI Darmstadt Czech Republic: CAS, Rez Techn. Univ. Prague France: IPHC Strasbourg Germany: Univ. Heidelberg, Phys. Inst. Univ. HD, Kirchhoff Inst. Univ. Frankfurt Hungaria: KFKI Budapest Eötvös Univ. Budapest India: Aligarh Muslim Univ., Aligarh IOP Bhubaneswar Panjab Univ., Chandigarh Gauhati Univ., Guwahati Univ. Rajasthan, Jaipur Univ. Jammu, Jammu IIT Kharagpur SAHA Kolkata Univ Calcutta, Kolkata VECC Kolkata Univ. Kashmir, Srinagar Banaras Hindu Univ., Varanasi Korea: Korea Univ. Seoul Pusan National Univ. Norway: Univ. Bergen Kurchatov Inst. Moscow LHE, JINR Dubna LPP, JINR Dubna Cyprus: Nikosia Univ. 55 institutions, > 400 members Dubna, Oct 2008 Russia: IHEP Protvino INR Troitzk ITEP Moscow KRI, St. Petersburg

29 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 29 Hadrons in dense medium (->e + e - ) Top SPS: excess of e + e - pairs around 0.5 GeV (by factor of ~2.8) 40AGeV: the excess rised up to ~4 → strong dependency on  B Rapp-Wambach –  in-medium modification Rapp: “dropping mass” according to Brown-Rho scaling scenario Thermal model

30 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 30 Elliptic flow at RHIC (√S NN = 200 GeV) g PHENIX, PRL.98:162301,2007 baryons mezons n 3 2 KE T = m T - m

31 all particles flow (even these with charm!) → strong interactions‏ scaling if taking the underlying number of quarks into account! →quark combine to hadrons at a later stage (hadronization via coalescence) data can only be explained assuming a large, early built up pressure in a nearly ideal liquid (low viscosity!) → sQGP

32 Elliptic flow at SPS data at top SPS support hypothesis of early development of collectivity influence of hadronic rescattering phase, resonance decay? lack of complete thermalization, viscosity effect? larger pt-range needed Pb+Pb collisions, √s NN = 17.3 GeV [NA49, G. Stefanek, PoS CPOD2006:030,2006]

33 Paweł StaszelKonwersatorium PTF oddział katowicki, Katowice 25.02.200933 In parallel, in time steps of 10-100s in SIS100/300 proton/heavy ion beams are accelerated to high energy: 90GeV – protons, 45GeV – heavy ions High energy proton and heavy ion beam are gradually extracted for HADES+ and CBM experiments

34 Paweł Staszel 31 st Mazurian Lakes Conference, Piaski 1.09.2008 34 Mapping the QCD phase diagram with heavy-ion collisions net baryon density:  B  4 ( m T /2  h2c2)3/2 x [exp((  B -m)/T) - exp((-  B -m)/T)] baryons - antibaryons Lattice QCD calculations: Fedor & Katz, Ejiri et al. SIS300


Download ppt "Future Physics with CBM Paweł Staszel Jagiellonian University  Physics motivation  Detector concept  Feasibility study  Status."

Similar presentations


Ads by Google