Download presentation
Presentation is loading. Please wait.
Published byOsborne Long Modified over 9 years ago
1
Beam Monitoring from Beam Strahlung work by summer students Gunnar Klämke (U Jena, 01) Marko Ternick (TU Cottbus, 02) Magdalena Luz (HU Berlin, 03) Regina Kwee (HU Berlin, 03) New student, summer 04 Achim Stahl DESY Zeuthen 16.Apr.2004
2
Beam Strahlung GeV/mm 2 Diagnostics of bunches at IP 3 potential sources of information energy-distribution of pairs number-distribution of pairs distribution of photons Over-simplified detector simulation detectors subdivided into cells sum energy impact on cells main source of uncertainty stat. fluctuations of beam-str. Linear approximation
3
Redesign for larger L*
4
Observables total energy first radial moment first moment in 1/r thrust value angular spread E(ring ≥ 4) / E tot (A + D) – (B + C) (A + B) – (C + D) E / N A BC D forward / backward calorimeter
5
Current Analysis Concept Beam Parameters determine collision creation of beamstr. creation of e + e - pairs guinea-pig Observables characterize energy distributions in detectors analysis program 1 st order Taylor-Exp. Observables Δ BeamPar Taylor Matrix nom = + * Solve by matrix inversion (Moore-Penrose Inverse)
6
Slopes beam parameter i observable j 1 point = 1 bunch crossing by guinea-pig parametrization (polynomial) slope at nom. value taylor coefficient i,j
7
Example: Slopes
8
((A+C) – (B+D)) / total energy Analysis Problem bunch rotation in mrad total energy slope = 0 at nom. Parameter linear approximation fails true for all observables analysis fails
9
1 st Results: Single Parameter Analysis 1 st Results: Single Parameter Analysis nominal our precisionBeam Diag. Bunch width x Ave. Diff. 553 nm 1.2 nm 2.8 nm ~ 10 % Bunch width y Ave. Diff. 5.0 nm 0.1 nm Shintake Monitor Bunch length z Ave. Diff. 300 μm 4.3 μm 2.6 μm ~ 10 % Emittance in x Ave. Diff. 10.0 mm mrad 1.0 mm mrad 0.4 mm mrad ? Emittance in y Ave. Diff. 0.03 mm mrad0.001 mm mrad ? Beam offset in x Beam offset in y 0 7 nm 0.2 nm 5 nm 0.1 nm Horizontal waist shift Vertical waist shift 0 μm 360 μm 80 μm 20 μm None
10
What’s new: consolidation of code new observable: E(ring ≥ 4) / Etot normalization of observables O/σ use of external measurments first look at real bunch trains
11
Single Parameter Analysis nominaloldnewnorm.Beam Diag. Bunch width x Ave. Diff. 553 nm 1.2 2.8 2.0 3.6 1.5 2.1 ~ 10 % Bunch width y Ave. Diff. 5.0 nm 0.1 0.2 0.5 0.2 0.5 Shintake Monitor Bunch length z Ave. Diff. 300 μm 4.3 2.6 7.5 3.5 4.3 2.7 ~ 10 % Emittance in x Ave. Diff. 10.0 mm mrad 1.0 0.4 --- 0.7 --- 0.7 ? Emittance in y Ave. Diff. 0.03 mm mrad0.001 0.004 0.001 0.002 ? Beam offset in x Beam offset in y 0 7 0.2 30 0.6 6 0.4 5 nm 0.1 nm Horizontal waist shift Vertical waist shift 0 μm 360 μm 80 20 --- 23 --- 24 None
12
Single Parameter Analysis Test of Linearity Range
13
Single Parameter Analysis weight of individual observables
14
Two Parameter Analysis Example: horizontal beam size Sngl Param Reso: 1.5 nm
15
Multi Parameter Analysis σxσx σyσy σzσz Δσ x Δσ y Δσ z 0.3 %0.4 %3.4 %9.5 %1.4 %0.8 % 0.3 % 0.4 %3.5 % 11 % 1.5 % 0.9 % 0.9 % 1.0 % 11 % 24 % 5.7 % 24 % 1.6 % 1.9 % 1.8 % 1.1 % 16 % 27 % 3.2 % 2.1 %
16
Multi Parameter Analysis Test with non-nominal bunches: e - e + nom. bunch size x: 575nm 575nm 553nm bunch size y: 5nm 7nm 5nm bunch size z: 290μm 320μm 300μm
17
Full Analysis nominal1-Par.constraintResultBeam Diag. Bunch width x Ave. Diff. 553 nm1.5 2.1 --- 25 12 ~ 10 % Bunch width y Ave. Diff. 5.0 nm0.2 0.5 --- 1.3 2.2 Shintake Monitor Bunch length z Ave. Diff. 300 μm4.3 2.7 --- 20 24 ~ 10 % Beam offset in x Beam offset in y 0 6 0.4 5 0.5 6.4 0.8 5 nm 0.1 nm Vertical waist shift360 μm24---300None Bunch charge Ave. Diff. 2 10 10 0.002 0.007 0.1 0.08 0.07 None
18
Real Beams: first look Example of 2 observables:
19
Real Beams: first look Single Parameter Analysis: σ x
20
3 Sources of Information energy-distribution of pairs number-distribution of pairs distribution of photons up to now: only energy distribution of pairs used test: number-distribution of pairs new observable N pairs / E tot 1 st layer: measures N all layers: measure E LumiCal
21
Number Distribution weight of new variable
22
Number Distribution nominal1-Par.6-Par. without N 6.-Par with N Bunch width x Ave. Diff. 553 nm1.5 2.1 9.9 6.2 8.3 6.0 Bunch width y Ave. Diff. 5.0 nm0.2 0.5 0.8 1.3 0.6 0.9 Bunch length z Ave. Diff. 300 μm4.3 2.7 9.5 6.2 9.4 6.1 Example: 6-Par. Analysis roughly 10% improvement
23
First Look at Photons
24
nominal setting (550 nm x 5 nm) σ x = 650 nmσ y = 3 nm
25
Next Steps: Include non-linear terms understand realistic beam simulation include photons ? impact on calorimeter design ? Conclusions: Interesting resolutions achieved from single bunches Multi-parameter analysis possible Electron – Positron bunch can be separated Not all parameters measurable
26
1st Fit with non-linear Terms nominaloldnorm.fitBeam Diag. Bunch width x Ave. Diff. 553 nm 1.2 2.8 1.5 2.1 1.5 2.2 ~ 10 % Bunch width y Ave. Diff. 5.0 nm 0.1 0.2 0.5 0.2 0.3 Shintake Monitor Bunch length z Ave. Diff. 300 μm 4.3 2.6 4.3 2.7 4.6 2.7 ~ 10 % Emittance in x Ave. Diff. 10.0 mm mrad 1.0 0.4 --- 0.7 --- 1.0 ? Emittance in y Ave. Diff. 0.03 mm mrad0.001 0.002 0.001 0.003 ? Beam offset in x Beam offset in y 0 7 0.2 6 0.4 7 0.03 5 nm 0.1 nm Horizontal waist shift Vertical waist shift 0 μm 360 μm 80 20 --- 24 --- 73 None bunch rot. horizontal0 mrad --- 49 0.06 ???? bunch rot. vertical0 mrad --- 0.9 0.07 ????
27
1st Fit with non-linear Terms
28
The Mask LumiCal shields detector against back scattered beam strahlung synchrotron radiation of final focus QUADs neutrons from the dump
29
The Mask LumiCal shields detector against back scattered beam strahlung synchrotron radiation of final focus QUADs neutrons from the dump 10 cm graphits 5 cm graphits
30
VTX-Detector: Simulations by Karsten Büsser, Hamburg
31
TPC: Simulations by Karsten Büsser TDR new: 0 crossing new: 20 mrad crossing slight increase in background ? optimization possible ? more in Paris
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.