Download presentation
Presentation is loading. Please wait.
Published byShavonne Cory Dickerson Modified over 8 years ago
1
تهیه کننده : نرگس مرعشی استاد راهنما : جناب آقای دکتر جمشید شنبه زاده
2
2
3
3
4
4
5
5
6
Linear Independence Rank of a Matrix Matrix Norm Singular Value Decomposition Vector Cross Product to Matrix Multiplication RANSAC 6
7
A finite subset of n vectors is linearly dependent if and only if there exists a set of n scalars a1,a2,…,an,not all zero a 1 v 1 +a 2 v 2 +…+a n v n =0 7
8
The column of a matrix A is the maximum number of linearly independent column vectors of A The row rank of a matrix A is the maximum number of linearly independent row vectors of A The column rank of A is the dimension of the column space of A The row rank of A is the dimension of the row space of A 8
9
9
10
L1 matrix norm is maximum of absolute column sum 10
11
11 Y=mx+c
12
Least squares Fit(over constraint) RANSAC(constraint) Hough Transform(under constraint) 12
13
13 y=mx+c=f(x,m,c) Minimize E=∑ i [y i -f(x i,m,c)] 2
14
14 y=mx+c y 1 =mx 1 +c y 2 =mx 2 +c. y n =mx n +c A T B=A T AD (A T A) -1 A T B=(A T A) -1 (A T A)D D=(A T A) -1 A T B
15
15
16
16
17
17
18
(AB) T =B T A T 18 1 2 3 5 4
19
19
20
20
21
21 1 2 8 3 5 4 7 6
22
22
23
23
24
24
25
25
26
26
27
27
28
28
29
29
30
30
31
31
32
32
33
33
34
34
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.