Download presentation
Presentation is loading. Please wait.
Published byBrittney Cain Modified over 9 years ago
1
An Introduction to Compressive Sensing Speaker: Ying-Jou Chen Advisor: Jian-Jiun Ding
2
Compressive Compressed Sensing Sampling CS
3
Outline Conventional Sampling & Compression Compressive Sensing Why it is useful? Framework When and how to use Recovery Simple demo
4
Review… Sampling and Compression
5
Nyquist’s Rate
6
Transform Coding
7
Compressive Sensing
9
Comparison Nyquist’s SamplingCompressive Sensing Sampling Frequency RecoveryLow pass filterConvex Optimization
10
Some Applications ECG One-pixel Camera Medical Imaging: MRI
11
Framework N M N M
12
When? How? Two things you must know…
13
When…. Signal is compressible, sparse… N M N M
14
Example… ECG
15
How… How to design the sampling matrix? How to decide the sampling rate (M)? M N
16
Sampling Matrix Low coherence
17
Coherence
18
Example: Time and Frequency
19
Fortunately…
20
More about low coherence… Random Sampling
21
Sampling Rate Can be exactly recovered with high probability. Theorem S: sparsity n: signal length
22
Recovery BUT…. M N M N N
23
Many related research… – GPSR (Gradient projection for sparse reconstruction) – L1-magic – SparseLab – BOA (Bound optimization approach) …..
24
Total Procedure f Sampling (Assume f is spare somewhere) Recovering
25
Sum up 1. 有 size 為 nx1 在某 domain 上 sparse 的訊號 2. 用 size 為 mxn 的 random matrix 做 sampling (m<n) 3. 得到 size 為 mx1 的 measurement y 4. 將 y 做 L1 norm recovery 還原得到 x_recovery
26
Demo Time
27
Reference Candes, E. J. and M. B. Wakin (2008). "An Introduction To Compressive Sampling." Signal Processing Magazine, IEEE 25(2): 21-30. Baraniuk, R. (2008). Compressive sensing. Information Sciences and Systems, 2008. CISS 2008. 42nd Annual Conference on. Richard Baraniuk, Mark Davenport, Marco Duarte, Chinmay Hegde. An Introduction to Compressive Sensing. https://sites.google.com/site/igorcarron2/cs#sparse http://videolectures.net/mlss09us_candes_ocsssrl1m/
28
Thanks a lot!
29
Key Points 1.Nyquist’s Rate 2.CS and Transform coding… 3.Sampling in time V.S. Sampling as inner products 4.About compressibility 5.About designing sampling matrix 6.About L1 norm explanation by geometry! 7.Application( MRI, One-pixel camera…)
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.