Download presentation
Published byAntonia Phillips Modified over 9 years ago
1
Polymer Electrolyte 공업화학과/정보통신소재연구실/석사2기 이 인 재 2000.11.27
Lithium secondary battery Historical background Electrochemical process Cell configuration Classifications Requirements Ionic Conductivity Polymer electrolyte Requirements Advantage Ion conduction mechanism Solid Polymer electrolyte Gel Polymer electrolyte
2
Lithium secondary battery
Linden, Handbook of batteries, 1994 Jang Myoun Ko, Polymer Science ang Technology, 1998, 9, 203 Yang Kook Sun, Prospectives of Industrial chemistry, 2000, 3, 11 Historical Background Electrochemical Process of Lithium secondary battery 1789 개구리다리로부터 전지현상발견 (Galbani(Italy)) 1799 구리-아연 전지 발명 (Cu/H2SO4/Zn,Volta(Italy)) 연축전지 발명(PbO2/H2SO4/Pb,Plante'(France)) 망간 건전지의 원형 발명(MnO2/NH4Cl.ZnCl2/Zn,Lechlanche(France)) 니켈-카드뮴 전지 발명 (NiOOH/KOH/Cd,Jungner(Sweden)) 니켈-아연 전지 발명 (NiOOH/KOH/Zn) 니켈-철 전지 발명 (NiOOH/KOH/Fe,Edison(USA)) 1909 알카리 망간전지 발명(MnO2/KOH/Zn) 공기 아연전지 발명(O2 in Air/KOH/Zn) 수은전지 발명(HgO/KOH/Zn) 리튬 1차전지실용화 미국 GM Delco 칼슘 MF 연축전지 개발 이산화망간-리튬 1차전지 실용화(MnO2/LiClO4/Li) 1981 리튬 이온2차전지발명 리튬 이온2차전지실용화,생산개시(일본 SONY사) 1990 밀폐형 닉켈-수소전지실용화(NiOOH/KOH/MH) 미국 켈리포니아주 대기정화법(Clean Air Act)통과 세계각국 전기자동차용 전지 본격적인 개발 수은전지 생산중지 Cathode LiMO Li1-xMO2+xLi+xe Anode C6+xLi+xe LixC Overall LiMO2+C LixO6+Li1-xMO2 Charge Discharge
3
Cell Configuration Cathode Anode Electrolyte
LiCoO2 LiNixCo1-xO2 LiNiO2 LiMn2O4 LiMnO2 결정구조 Layered Spinel 이론용량(mAh/g) 274 275 148 285 실제용량(mAh/g) >135 >185 >160 >120 >190 평균전압(V) 3.6 3.8 ~2.8,~3.4 Cost high moderate low Low Anode Electrolyte Solid polymer electrolyte + Lithium salt Gel polymer electrolyte + Lithium Salt + Solvent Lithium salt ; LiClO4, Li(CF3SO2)2N, LiCF3SO3, LiAsF6, LiPF6, LiBF6 Solvent ; PC, EC, DMC, EMC, DEC, -BL, etc 음극물질 무게당 용량(mAh/g) 부피당 용량(mAh/l) C6(Coke)(50%사용시) 186 372 C6(graphite) 515 Li metal(25%사용시) 965 837 Li metal(100%사용시 3861 2062
4
이론 용량과 실제 용량 Faraday’s Low of Electrolysis
; 1g당량의 원자 또는 원자단이 석출하는데 필요한 전기량은 물질에 관계없이 항상 일정한 96487C을 갖는다. Ex)Li1-xMO2(M=Co, Ni, Mn, …) LiCoO2(MW=97.87) 1F=96487C=96487A•s 1h/3600s 1000mA/A = 26800mAh ∴ 26800mAh/97.87g = 273mAh/g ⇒ LiCoO2 의 이론용량 실제용량은 x=0.5이하이므로 137mAh/g Li1-xMn2O4(MW=180.8) 똑같은 계산으로 26800mAh/180.8g = 148mAh/g Spinel structure의 Li1-xMn2O4는 x=1이므로 실제용량이 이론용량값과 거의 일치
5
Classifications of Requirements of Lithium secondary battery Lithium secondary battery
Lithium Ion Lithium Ion Polymer Lithium Metal Polymer 음극 탄소 리튬 전해질 액체 전해질 고분자 전해질 양극 금속 산화물 (LiCoO2, LiN2O2, LiMn2O4 등) 금속 산화물, 유기 Sulfur, 전도성 고분자 평균전압 3.6V 2.0~3.6V 에너지밀도 High Very High 사이클특성 Excellent Poor 저온특성 Good Medium 안전성 Cell 디자인 자유도 용도 및 개발시기 3C시장 91년 Sony 97년 Ultralife 3C, EV(대용량) 개발중 Energy density(Wh/g or Wh/l) Wh=Ah(용량) V(전압) Cycle life (100% DOD 기준) Rate performance (C-Rate) 작동온도구간 방전;-20~+60℃, 충전;0~40℃ 보존 특성 (충전보존, 가역성보존) 자기 방전 안전성 Memory effect 형상 자유성 Cost 환경문제
6
Ionic Conductivity Measurements of conductivity Basic concept
Richard G. Compton, Giles H.W. Sanders, Electrode Potentials, 1996 Peter G. Bruce, in “Polymer Electrolyte Reviews”, ed. By J.R.MacCallum, 1987, 237 Basic concept = 1/ = l/RA Where, =conductivity(-1m-1),=resistivity, R=resistance Conductivity is a property of the chemical nature and composition of the electrolyte solution Ohm’s low V=IR ∴ =(I/A)/(V/l) (I/A=current density, V/l=voltage gradient) Basic electrical properties of a polymer electrolyte 1)the total conductivity of the electrolyte as a function of Temp. 2)identification of the different charged species contributing to conduction 3)transport numbers, i.e. the proportion of the current carried by each charged species, as a function of Temp. Measurements of conductivity Direct current measurement(D.C.) simple, straightforward method conductivity value를 바로 얻음 Alternating current measurement(A.C.) Vmax/Imax:the ratio of the voltage and current maxima : the phase difference between the voltage and current Impedance Z=f(Vmax/Imax,,) Z*=Z’-jZ” Resistor : =0, Z=R Capacitor : =-2/, Z=1/C
7
Polymer electrolyte Requirements of Polymer electrolyte
Fiona M. Gray, Polymer Electrolyte, Peter V. Wright, Br. Polym. J., 1975, 7, 319 Jung Ki Park, Polymer Science and Technology, 1998, 9, 한원길역, 폴리머 전지, 2000 Requirements of Polymer electrolyte Ion Conduction Mechanism High ion conductivity R.T) Good compatibility between polymer matrix and liquid electrolyte Thermal and electrochemical stability Good mechanical stability High cation transference number Availability Solid polymer electrolyte Low barriers to rotation for atoms in the main chain so as to ensure high flexibility and hence facilitate segmental motion Advantage of Polymer electrolyte Gel polymer electrolyte Design flexibility High energy density Thin film No leakage of liquid electrolyte Low cost Lithium cation dissociated by organic solvent Transported through the free volume or micropore polymer matrix and liquid electrolyte
8
Solid polymer electrolyte
PEO <10-8S/cm Tg=-64℃ PPO <10-8S/cm -60℃ Polyester Polyamine Polysulfide Second Generation High molecular weigh amorphous or reduced crystallinity polyether-based host architectures Random copolymer Comb-branched copolymer Network Gel electrolytes:systems containing low molecular weight solvent Random polyether POO 10-8S/cm -66℃
9
Comb-branched copolymer
PMG 10-8S/cm -50℃(amorphous) P(EO/MEEGE) P(EO/MEEGE)-5 (95:5) -61℃ P(EO/MEEGE)-9 (91:9) -65℃ (M. Watanabe, A. Nishimoto, Electrochimica Acta, 1998, 43, 1177) Siloxane-based 10-4S/cm 10-4~10-5S/cm MEEP 10-5S/cm -83℃(amorphous)
10
P(EO/MEEGE)73/27 Poly((amino)[(2-methoxyethoxy)ethoxy])phosphazenes Tg=-65~-50℃ Improve dimensional stability 1.4 60℃ 3.3 40℃ (Nishimoto et al, J. Power Sources, 1999, 81-82, 786) (Y.W.chen-Yang et al, macromolecules, 2000, 33, 1237)
11
Ion conductivity of polymer 4 and polymer 5
Networks Poly(propylene oxide) PEO based(via thermal with crosslinker) (Nishimoto et al, Solid State Ionics, 1995, 79, 306) Ion conductivity of polymer 4 and polymer 5 (M. Watanabe, N. Ogata, in “Polymer Electrolyte Reviews”, 1987, 39)
12
PEO based(via photo) P(EO/MEEGE) ℃ P(EO/MEEGE) –68.9℃ P(EO/MEEGE) –68.6℃ P(EO/MEEGE) –71.3℃ P(EO/MEEGE) –68.7℃ P(EO/MEEGE) –67.4℃ P(EO/MEEGE) –66.7℃ (Nishimoto et al, Macromolecules, 1999, 32, 1541)
13
Gel Polymer electrolyte
PAN/MEEP based PVC based (M. Watanabe, A. Nishimoto, Solid State Ionics, 1996, 86-88, 385) (L.M.Abraham, M.Alamgir, J.Electrochem.Soc., 1990, 137, 1657)
14
PVdF based Acrylate based
(J. Y. Song et al, J. Electrochem. Soc., 2000, 147, 3219) S. I. Moon et al, J. Power Sources, 2000, 87, 213
15
Poly(p-phenylene) based
(Wolfgang H.Meyer, Adv. Mater., 1998, 10, 439 P.Baum, W. H. Meyer, G. Wegner, Polymer, 2000, 41, 965)
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.