Download presentation
Presentation is loading. Please wait.
Published byGiles Horton Modified over 8 years ago
1
Theoretical Analysis of CMOS Computational Circuits for Analog Signal Processing Prof. dr. ing. Cosmin Radu POPA March 2015
2
1. Introduction
3
Advantages of analog computation: - Low-power operation - High speed - High accuracy - Small silicon areas Research objectives: - Improvement of circuits’ accuracies - Low-voltage low-power operations - Reduction of circuits’ complexity - Increasing the number of developed circuit functions
4
1. Introduction 2. Fundamental CMOS computational structures 2.1. Squaring circuits 2.2. Multiplier/divider circuits 2.3. Euclidean distance circuits 2.4. Active resistor structures 3. Multifunctional structures 4. CMOS function synthesizers 4.1. General function synthesizers 4.2. Exponential function synthesizers 4.3. Gaussian function synthesizers 4.4. Sinh and tanh function synthesizers 5. Conclusions OUTLINE
5
2. Fundamental CMOS computational structures
6
2.1. Squaring circuits
7
2.1. Squaring circuits Voltage-input circuits
8
Squaring circuit (I)
9
Squaring circuit (I) – general schematic 2.1. Squaring circuits
10
Squaring circuit (I) – first realization 2.1. Squaring circuits
11
Squaring circuit (I) – second realization 2.1. Squaring circuits
12
2.1. Squaring circuits Voltage-input circuits Squaring circuit (II)
13
2.1. Squaring circuits
14
2.1. Squaring circuits Current-input circuits
15
Squaring circuit (III)
16
2.1. Squaring circuits
17
2.1. Squaring circuits Current-input circuits Squaring circuit (IV)
18
2.1. Squaring circuits
19
2. Fundamental CMOS computational structures 2.2. Multiplier/divider circuits
20
2.2. Multiplier/divider circuits Voltage-input circuits
21
Multiplier circuit (I)
22
Multiplier circuit (I) – block diagram 2.2. Multiplier/divider circuits
23
Multiplier circuit (I) – equivalent schematic 2.2. Multiplier/divider circuits
24
Realization of DA blocks 2.2. Multiplier/divider circuits
25
2.2. Multiplier/divider circuits Voltage-input circuits Multiplier circuit (II)
26
Multifunctional core Multiplier circuit (II) 2.2. Multiplier/divider circuits
27
Multiplier schematic Multiplier circuit (II) 2.2. Multiplier/divider circuits
28
2.2. Multiplier/divider circuits Current-input circuits
29
2.2. Multiplier/divider circuits Current-input circuits Multiplier/divider circuit (III)
30
Multiplier/divider circuit (III) 2.2. Multiplier/divider circuits
31
2.2. Multiplier/divider circuits Current-input circuits Multiplier/divider circuit (IV)
32
Multiplier/divider circuit (IV) 2.2. Multiplier/divider circuits
33
2. Fundamental CMOS computational structures 2.3. Euclidean distance circuits
34
2.3. Euclidean distance circuits Block diagram of the Euclidean distance circuit
35
Block diagram Block diagram of the Euclidean distance circuit 2.3. Euclidean distance circuits
36
Euclidean distance circuit
37
2.3. Euclidean distance circuits
38
So: Similar: But: The I Y current can be expressed as follows: resulting: Euclidean distance circuit 2.3. Euclidean distance circuits
39
2. Fundamental CMOS computational structures 2.4. Active resistor structures
40
2.4. Active resistor structures Active resistor structure with positive equivalent resistance (I)
41
Active resistor structure with positive equivalent resistance (I) 2.4. Active resistor structures
42
2.4. Active resistor structures Active resistor structure with negative equivalent resistance (I)
43
Active resistor structure with negative equivalent resistance (I) 2.4. Active resistor structures
44
2.4. Active resistor structures Active resistor structure with positive equivalent resistance (II) - - block diagram
45
Resulting : Active resistor structure with positive equivalent resistance (II) - - block diagram 2.4. Active resistor structures
46
2.4. Active resistor structures Active resistor structure with positive equivalent resistance (III) - - block diagram
47
Active resistor structure with positive equivalent resistance (III) - - block diagram 2.4. Active resistor structures
48
3. Multifunctional structures
49
3. Multifunctional structures Voltage-input circuits
50
3. Multifunctional structures Voltage-input circuits Multifunctional circuit (I)
51
Multifunctional circuit (I) Nonlinear multifunctional core (NMC) 3. Multifunctional structures
52
Linear differential amplifier - block diagram 3. Multifunctional structures Multifunctional circuit (I)
53
3. Multifunctional structures Multifunctional circuit (I) Realization of a linear differential amplifier - first implementation
54
Realization of a linear differential amplifier - second implementation 3. Multifunctional structures Multifunctional circuit (I)
55
Active resistor structure with positive equivalent resistance - - block diagram 3. Multifunctional structures Multifunctional circuit (I)
56
3. Multifunctional structures Multifunctional circuit (I) Realization of an active resistor structure with positive equivalent resistance - first implementation
57
3. Multifunctional structures Multifunctional circuit (I) Realization of an active resistor structure with positive equivalent resistance - second implementation
58
Active resistor structure with negative equivalent resistance - - block diagram 3. Multifunctional structures Multifunctional circuit (I)
59
3. Multifunctional structures Multifunctional circuit (I) Realization of an active resistor structure with negative equivalent resistance - first implementation
60
Realization of an active resistor structure with negative equivalent resistance - second implementation 3. Multifunctional structures Multifunctional circuit (I)
61
Squaring circuit - block diagram 3. Multifunctional structures Multifunctional circuit (I)
62
3. Multifunctional structures Multifunctional circuit (I) Realization of a squaring circuit – first implementation
63
Realization of a squaring circuit – second implementation 3. Multifunctional structures Multifunctional circuit (I)
64
Multiplier circuit (I) - block diagram 3. Multifunctional structures Multifunctional circuit (I)
65
3. Multifunctional structures Multifunctional circuit (I) Realization of the multiplier circuit (I) - first implementation
66
3. Multifunctional structures Multifunctional circuit (I) Realization of the multiplier circuit (I) - - second implementation
67
Multiplier circuit (II) - block diagram 3. Multifunctional structures Multifunctional circuit (I)
68
3. Multifunctional structures Voltage-input circuits Multifunctional circuit (II)
69
Nonlinear multifunctional core (NMC) 3. Multifunctional structures Multifunctional circuit (II)
70
Realization of the nonlinear multifunctional core 3. Multifunctional structures Multifunctional circuit (II)
71
3. Multifunctional structures Multifunctional circuit (II) Linear differential amplifier - block diagram
72
Realization of a linear differential amplifier 3. Multifunctional structures Multifunctional circuit (II)
73
3. Multifunctional structures Multifunctional circuit (II) Squaring circuit - block diagram
74
Realization of the DA block 3. Multifunctional structures Multifunctional circuit (II) Multiplier circuit - block diagram
75
It results: 3. Multifunctional structures Multifunctional circuit (II) Multiplier circuit - circuit analysis
76
Realization of the multiplier circuit 3. Multifunctional structures Multifunctional circuit (II)
77
3. Multifunctional structures Voltage-input circuits Multifunctional circuit (III)
78
Nonlinear multifunctional core (NMC) 3. Multifunctional structures Multifunctional circuit (III)
79
Realization of the linear differential amplifier 3. Multifunctional structures Multifunctional circuit (III)
80
3. Multifunctional structures Multifunctional circuit (III) Realization of an active resistor with positive equivalent resistance
81
Realization of an active resistor with negative equivalent resistance 3. Multifunctional structures Multifunctional circuit (III)
82
Realization of the multiplier circuit It results: 3. Multifunctional structures Multifunctional circuit (III)
83
3. Multifunctional structures Current-input circuits
84
3. Multifunctional structures Current-input circuits Multifunctional circuit (IV)
85
Current-mode nonlinear multifunctional core (NMC) 3. Multifunctional structures Multifunctional circuit (IV)
86
Block diagram of the squaring circuit 3. Multifunctional structures Multifunctional circuit(IV)
87
Block diagram of the multiplier/divider circuit 3. Multifunctional structures Multifunctional circuit (IV)
88
Realization of the multiplier/divider circuit 3. Multifunctional structures Multifunctional circuit (IV)
89
4. CMOS function synthesizers
90
4.1. General function synthesizers
91
4.1. General function synthesizers Third-order function synthesizer
92
General form of the approximation function: resulting: Taylor series of f(x) function: Third-order approximation function Third-order function synthesizer 4.1. General function synthesizers
93
Functional core (FC) of the function synthesizer Third-order function synthesizer 4.1. General function synthesizers
94
Block diagram of the function synthesizer 4.1. General function synthesizers Third-order function synthesizer
95
Circuit of the function synthesizer 4.1. General function synthesizers Third-order function synthesizer
96
4.1. General function synthesizers Fourth-order function synthesizer
97
Funcţia de aproximare de ordin IV Fourth-order function synthesizer 4.1. General function synthesizers General form of the approximation function: Taylor series of f(x) function:
98
4. CMOS function synthesizers 4.2. Exponential function synthesizers
99
4.2. Exponential function synthesizers Approximation of the exponential function
100
Classical approximations of the exponential function: - Limited Taylor series: - Second-order approximation functions. Example: 4.2. Exponential function synthesizers Approximation of the exponential function
101
Proposed superior-order approximation functions: - Third-order approximations: - Fourth-order approximations: 4.2. Exponential function synthesizers
102
Exponential circuits using third-order approximation functions (a)
103
It results: 4.2. Exponential function synthesizers So, I OUT will be proportional (in a third-order approximation) with the exponential function:
104
4.2. Exponential function synthesizers Exponential circuits using third-order approximation functions (b)
105
It results: 4.2. Exponential function synthesizers So, I OUT will be proportional (in a third-order approximation) with the exponential function:
106
4.2. Exponential function synthesizers Exponential circuits using fourth-order approximation functions (a)
107
It results: 4.2. Exponential function synthesizers So, I OUT will be proportional (in a fourth-order approximation) with the exponential function:
108
4.2. Exponential function synthesizers Exponential circuits using fourth-order approximation functions (b)
109
4.2. Exponential function synthesizers
110
It results: So, I OUT will be proportional (in a fourth-order approximation) with the exponential function: So: 4.2. Exponential function synthesizers Exponential circuits using fourth-order approximation functions (b)
111
4. CMOS function synthesizers 4.3. Gaussian function synthesizers
112
Approximation of the Gaussian function using Taylor series
113
Fundamental sixth-order Taylor series approximation function: 4.3. Gaussian function synthesizers Improved sixth-order Taylor series approximation function:
114
4.3. Gaussian function synthesizers Block diagram of the Gaussian function circuit (I)
115
4.3. Gaussian function synthesizers
116
Analysis of the Gaussian function circuit (I)
117
It results: 4.3. Gaussian function synthesizers
118
Block diagram of the Gaussian function circuit (II)
119
4.3. Gaussian function synthesizers
120
Analysis of the Gaussian function circuit (II)
121
4.3. Gaussian function synthesizers
122
It results: 4.3. Gaussian function synthesizers Analysis of the Gaussian function circuit (II)
123
4.3. Gaussian function synthesizers Squaring circuit realization
124
It results: 4.3. Gaussian function synthesizers
125
4. CMOS function synthesizers 4.4. Sinh (x) and tanh (x) function synthesizers
126
4.4. Sinh (x) and tanh (x) function synthesizers Sinh (x) function synthesizer
127
Fifth-order approximation of the sinh(x) function Sinh (x) function synthesizer 4.4. Sinh (x) and tanh (x) function synthesizers Graphical representation of f(x) = sinh (x) and g 2 (x) functions Graphical representation of the approximation error Fifth-order approximation function:
128
Block diagram of the sinh (x) function synthesizer 4.4. Sinh (x) and tanh (x) function synthesizers Sinh (x) function synthesizer
129
Circuit of the sinh (x) function synthesizer 4.4. Sinh (x) and tanh (x) function synthesizers Sinh (x) function synthesizer
130
4.4. Sinh (x) and tanh (x) function synthesizers Tanh (x) function synthesizer
131
Graphical representation of f(x) = tanh (x) and g 6 (x) functions Graphical representation of the approximation error Fifth-order approximation function: Fifth-order approximation of the tanh (x) function 4.4. Sinh (x) and tanh (x) function synthesizers Tanh (x) function synthesizer
132
Block diagram of the tanh (x) function synthesizer 4.4. Sinh (x) and tanh (x) function synthesizers Tanh (x) function synthesizer
133
5. Conclusions
134
Advantages of analog computation: - Low-power operation - Real-time operation - Increased accuracy - Reduced complexity Optimized computational structures: - Fundamental CMOS computational structures - Multifunctional structures - CMOS function synthesizers
135
Thank you!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.