Download presentation
Presentation is loading. Please wait.
Published byAmelia Hines Modified over 8 years ago
1
Chapter 1: Preliminary Information Section 1-4: Polynomials
2
Objectives Given an expression: ◦ Tell whether or not it is a polynomial. ◦ If it is, then name it: By degree By number of terms Given two binomials, multiply them together.
3
Polynomials Polynomials are algebraic expressions that involve only the operations of addition, subtraction, and multiplication of variables. They involve no non-algebraic operations such as: ◦ Absolute value ◦ Any operation where the real numbers are not a closed set: Division (because you cannot divide by zero) Square roots (because you cannot have square roots of negatives)
4
More on Polynomials: The following expressions are examples of polynomials:
5
More on Polynomials The following examples are not polynomials:
6
Terms of an Expression “Terms” in an expression are the parts of the expression that are added or subtracted. 3x 2 + 5x -7 has three terms. Special names are used for expressions with a certain number of terms.
7
Names according to # of terms Number of TermsNameExample 1Monomial3x 2 y 5 2Binomial3x 2 + y 5 3Trinomial3 – x 2 + y 5 4 or moreNo specific name3x 5 - 2x 4 + 5x 3 - 6x 2 + 2x
8
Factors Factors in an expression are parts of the expression that are multiplied together. 5x 2 has three factors: 5, x, and x. Special names are given to polynomials depending on how many variables are multiplied together.
9
Degree of a Polynomial The degree of a polynomial is the maximum number of variables that appear as factors in any one term.
10
Names according to degree DegreeNameExample 0Constant13 1stLinear5x 2ndQuadratic7x 2 3rdCubic4x 3 4thQuarticx4x4 5thQuintic9x 5 6th or moreNo special name3x 17
11
Multiplying Binomials
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.