Download presentation
Presentation is loading. Please wait.
Published byMarion Garrison Modified over 8 years ago
1
Simplify the following… 2(4 + x) x(x – 3x 2 + 2) 5x – 2 + 6x 2x 2 + 5x – 11x 2 + 1 8x(4x 2 )
2
Adding, Subtracting and Multiplying Polynomials
3
Polynomial – A monomial or sum of monomials. Monomial – A number, variable, or product of a number and 1 or more variables. 5x Binomial – The sum of two monomials. 2x 2 + 7 Trinomial – The sum of three monomials. x 3 – 10x + 4
4
Degree of a Polynomial – The greatest degree of any term in the polynomial. Degree 0 = Constant Degree 1 = Linear Degree 2 = Quadratic Degree 3 = Cubic Example: 5x 3 + 6x 2 – 2 Degree is 3 (Cubic)
5
ExpressionIs it a Polynomial? What is the degree? Monomial, Binomial, or Trinomial? 4x – 5yz -6.5 7a -3 + 9b 6x 3 + 4x + x + 3
6
Write the terms in order from greatest to least degree. 4x 3 – 5x 2 + 2x – 7 Your Turn… Write these in standard form. 1. 3x 2 + 4x 5 – 8x 2. x + 5x 3 – 2x 2 – 7x 6 + 10
7
Method 1: Combine Like Terms!!! (2x 2 + 5x – 7) + (3 – 4x 2 + 6x) Method 2: Align and Combine!!! (3x + x 3 – 5) + (4x 2 – 4x + 2x 3 + 8)
8
Method: Distribute the negative. Then, solve by adding. (3 – 2x + 2x 2 ) – (4x – 5 + 3x 2 ) (7x + 4x 3 – 8) – (3x 2 + 2 – 9x)
9
-3x 2 (7x 2 – x + 4)
10
2x(-4x 2 + 5x) – 5(2x 2 + 20)
11
2x(5x – 2) + 3x(2x + 6) + 8 = x(4x + 1) + 2x(6x – 4) + 50 x(x + 3) – x(x – 4) = 9x – 16
12
8.1 8.2
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.