Download presentation
Published byFrancis Allison Modified over 9 years ago
1
Modern Chemistry Chapter 4 Arrangement of Electrons in Atoms
Sections 1-3 The Development of a New Atomic Model The Quantum Model of the Atom Electron Configurations
2
The Quantum Model of the Atom
Section 2 The Quantum Model of the Atom Chapter 4 Section 2 The Quantum Model pages
3
Chapter 4 Section 2 The Quantum Model pages 104-110
Electrons As Waves Electrons can have wave and particle characteristics (like light). Waves (electrons) confined to a space can have only certain frequencies The frequencies correspond to Bohr’s orbits. Louis de Broglie Chapter 4 Section 2 The Quantum Model pages
4
Chapter 4 Section 2 The Quantum Model pages 104-110
Electrons As Waves This is confirmed by experiments Electrons, like waves, can be bent, diffracted and have interference Diffraction: the bending of a wave as it passes through a small opening Interference: when waves overlap. Chapter 4 Section 2 The Quantum Model pages
5
The Heisenberg Uncertainty Principle
Involves the detection of electrons To detect an electron a photon is used The photon interacts with the electron and changes its course There is uncertainty in trying to locate an electron. Chapter 4 Section 2 The Quantum Model pages
6
The Heisenberg Uncertainty Principle
It is impossible to determine simultaneously both the position and velocity of an electron or any other particle. Chapter 4 Section 2 The Quantum Model pages
7
The Schrödinger Wave Equation
Developed an equation that treats electrons as waves Proved the quantization of electron energies Quantum theory: describes mathematically the wave properties of electrons and other small particles Chapter 4 Section 2 The Quantum Model pages
8
The Schrödinger Wave Equation
Solutions to the equations are wave functions. Wave functions give the probability of finding electrons. Electrons do not travel in neat orbits. Electrons exist in regions called orbitals. Orbital: a three dimensional region around the nucleus that indicates the probable location of electrons. Chapter 4 Section 2 The Quantum Model pages
9
Heisenbery Uncertainty Principle Animation
Chapter 4 Section 2 The Quantum Model pages
10
Atomic Orbitals and Quantum Numbers
Quantum numbers specify the properties of atomic orbitals and the properties of electrons in the orbital. The first three numbers result from the solution to Schrodinger’s wave equation. Chapter 4 Section 2 The Quantum Model pages
11
Principle Quantum Number
1 Symbol = n Energy Level n = 1, 2, 3, 4, 5, 6, 7 (whole numbers) As n increases the electron’s energy and average distance from the nucleus increases. Chapter 4 Section 2 The Quantum Model pages
12
Angular Momentum Quantum Number
2 Symbol = l Shape of orbital (sublevel) l = s, p, d, f A sublevel is made up of a certain number of orbitals Chapter 4 Section 2 The Quantum Model pages
13
Atomic Orbitals and Quantum Numbers
Sublevel Orbitals Electrons s 1 2 p 3 6 d 5 10 f 7 14 Chapter 4 Section 2 The Quantum Model pages
14
Magnetic Quantum Number
3 Symbol = m Orientation around the nucleus m = x, y, z, xy, yz, xz Chapter 4 Section 2 The Quantum Model pages
15
Chapter 4 Section 2 The Quantum Model pages 104-110
Spin Quantum Number 4 Symbol = ms Spin State of the electron m = +1/2, -1/2 When electrons spin they produce a magnetic field. Two electrons can exist in one orbital. Each electron must have an opposite spin state. Chapter 4 Section 2 The Quantum Model pages
16
# of electrons on a energy level
7s2 7p6 7d f14 7g 7h 7i 6s2 6p6 6d f14 6g 6h 5s2 5p6 5d f14 5g 4s2 4p d f14 3s2 3p6 3d10 2s2 2p6 1s2 # of electrons on a energy level 32e- = 18e- = 8e- = 2 + 6 2e- = 2 in the s orbital Chapter 4 Section 2 The Quantum Model pages
17
Electron Configurations
Section 3 Electron Configurations Chapter 4 Section 3 Electron Configurations pages
18
Chapter 4 Section 3 Electron Configurations pages 110-122
Aufbau principle Pauli exclusion principle Hund’s Rule Noble Gas Noble Gas configurations Section 3 Vocabulary Chapter 4 Section 3 Electron Configurations pages
19
Rules Governing Electron Configurations
Aufbau Principle An electron occupies the lowest energy orbital that can receive it Less energy is required for electrons to pair up in the 4s than the 3d. Aufbau: German for construction Chapter 4 Section 3 Electron Configurations pages
20
Aufbau Principle Animation
Chapter 4 Section 3 Electron Configurations pages
21
Sublevel Filling Order
7s 7p 7d 7f 7g 7h 7i 6s 6p 6d 6f 6g 6h 5s 5p 5d 5f 5g 4s 4p 4d 4f 3s 3p 3d 2s 2p 1s Sublevel Filling Order Chapter 4 Section 3 Electron Configurations pages
22
Rules Governing Electron Configurations
Pauli Exclusion Principle No two electrons in the same atom can have the same set of four quantum numbers. Electrons must have opposite spin states Two electrons can exist in an orbital. Chapter 4 Section 3 Electron Configurations pages
23
Chapter 4 Section 3 Electron Configurations pages 110-122
Pauli and Bohr Chapter 4 Section 3 Electron Configurations pages
24
Pauli Exclusion Principle Animation
Chapter 4 Section 3 Electron Configurations pages
25
Rules Governing Electron Configurations
Hund’s Rule Orbitals of equal energy are each occupied by one electron before any orbital is occupied by a second electron, and all electrons in singly occupied orbitals must have the same spin state. Repulsion between electrons is minimized. Chapter 4 Section 3 Electron Configurations pages
26
Chapter 4 Section 3 Electron Configurations pages 110-122
27
Chapter 4 Section 3 Electron Configurations pages 110-122
3d 4d 5s 5p 6s 5d 6p 6d 7s 4f 5f Chapter 4 Section 3 Electron Configurations pages
28
Chapter 4 Section 3 Electron Configurations pages 110-122
PRACTICE Page 113 # 1 & 2 Write the electron configurations for the following elements: Ne, Na, Mg, Ar, K p. 113 Chapter 4 Section 3 Electron Configurations pages
29
Orbital Notation Animation
Chapter 4 Section 3 Electron Configurations pages
30
Representing Electron Configurations
Orbital Notation . 1s 2s 2p Which element is this? How does this show Hund’s rule? Chapter 4 Section 3 Electron Configurations pages
31
Chapter 4 Section 3 Electron Configurations pages 110-122
Orbital Diagram for Si orbital 14 electrons electron (-1/2 spin) 1s 2s 2p 3s 3p electron (+1/2 spin) sublevel Chapter 4 Section 3 Electron Configurations pages
32
Shapes of s, p and d orbitals Image
Chapter 4 Section 3 Electron Configurations pages
33
Representing Electron Configurations
Orbital Notation . 1s 2s 2p Electron Configurations 1s2 2s2 2p3 Use superscripts instead of lines and arrows. Chapter 4 Section 3 Electron Configurations pages
34
Reading Electron Configuration Notation Animation
Chapter 4 Section 3 Electron Configurations pages
35
Electron Configurations
For Manganese – 25 electrons 1s 2s 2p 3s 3p 4s 3d 2 2 6 2 6 2 5 number of electrons in the sublevel sublevel Chapter 4 Section 3 Electron Configurations pages
36
Electron Configuration Animation
p. xx Chapter 4 Section 3 Electron Configurations pages
37
Chapter 4 Section 3 Electron Configurations pages 110-122
PRACTICE Page 113 # 1 & 2 Write the electron configurations for the following elements: Ne, Na, Mg, Ar, K p. 113 Chapter 4 Section 3 Electron Configurations pages
38
Elements of the Second Period
3Li = 1s2 2s1 6C = 1s2 2s2 2p2 Inner shell electrons Highest occupied energy level C = 4 valence electrons Li = 1 valence electron Valence electrons: electrons occupying the highest energy level in an atom Chapter 4 Section 3 Electron Configurations pages
39
Elements of the Third Period
10Ne = 11Na = 12Mg = 18Ar = 19K = 1s2 2s2 2p6 1s2 2s2 2p6 3s1 1s2 2s2 2p6 3s2 1s2 2s2 2p6 3s2 3p6 1s2 2s2 2p6 3s2 3p6 4s1 Chapter 4 Section 3 Electron Configurations pages
40
Elements of the Third Period
Look! It’s neon! 10Ne = 11Na = 12Mg = 18Ar = 19K = 1s2 2s2 2p6 1s2 2s2 2p6 3s1 1s2 2s2 2p6 3s2 1s2 2s2 2p6 3s2 3p6 1s2 2s2 2p6 3s2 3p6 4s1 Ar?! Chapter 4 Section 3 Electron Configurations pages
41
Elements of the Third Period
10Ne = 11Na = 12Mg = 18Ar = 19K = 1s2 2s2 2p6 1s2 2s2 2p6 3s1 1s2 2s2 2p6 3s2 1s2 2s2 2p6 3s2 3p6 1s2 2s2 2p6 3s2 3p6 4s1 [Ne] [Ne] [Ar] Chapter 4 Section 3 Electron Configurations pages
42
Elements of the Third Period
10Ne = 11Na = 12Mg = 18Ar = 19K = 1s2 2s2 2p6 [Ne] 3s1 [Ne] 3s2 1s2 2s2 2p6 3s2 3p6 [Ar] 4s1 Chapter 4 Section 3 Electron Configurations pages
43
Noble Gas Notation Animation
Chapter 4 Section 3 Electron Configurations pages
44
Noble Gas Configuration
Find the noble gas with an atomic number closest to but less than the element’s atomic number. Find the next sublevel after that noble gas Fill in sublevels with the “leftover” electrons. (atomic # of element – atomic # of noble gas) Chapter 4 Section 3 Electron Configurations pages
45
Noble Gas Configurations
2p6 3p6 4p6 5p6 6p6 Chapter 4 Section 3 Electron Configurations pages
46
Chapter 4 Section 3 Electron Configurations pages 110-122
47
Chapter 4 Section 3 Electron Configurations pages 110-122
3d 4d 5s 5p 6s 5d 6p 6d 7s 4f 5f Chapter 4 Section 3 Electron Configurations pages
48
Elements of the Fourth Period
Deviations 24Cr = 24Cr = [Ar] 3d5 4s1 unpaired electrons give a more stable arrangement with a lower energy 29Cu = 29Cu = [Ar] 3d10 4s1 No explanation for either [Ar] 4s2 3d4 WRONG!!! [Ar] 3d9 4s2 WRONG!!! Chapter 4 Section 3 Electron Configurations pages
49
Elements of the Fourth Period
Even though the d sublevel fills before the p sublevel, the s sublevel is moved to be with the p sublevel. 53I = [Kr] 5s2 4d10 5p5 is written as… 53I = [Kr] 4d10 5s2 5p5 The sublevels on the same energy level are together. It also shows the valence electrons. Chapter 4 Section 3 Electron Configurations pages
50
Elements of the Fifth Period
Y [Kr] 4d1 5s2 Zr [Kr] 4d2 5s2 Nb [Kr] 4d3 5s2 Mo [Kr] 4d4 5s2 Tc [Kr] 4d5 5s2 Ru [Kr] 4d6 5s2 Rh [Kr] 4d7 5s2 Pd [Kr] 4d8 5s2 Ag [Kr] 4d9 5s2 Cd [Kr] 4d10 5s2 expected deviations Nb [Kr] 4d4 5s1 Mo [Kr] 4d5 5s1 Tc [Kr] 4d6 5s1 Ru [Kr] 4d7 5s1 Rh [Kr] 4d8 5s1 Pd [Kr] 4d10 Ag [Kr] 4d10 5s1 p.120 Chapter 4 Section 3 Electron Configurations pages
51
Chapter 4 Section 3 Electron Configurations pages 110-122
PRACTICE Page 121 #1-4 p. 113 Chapter 4 Section 3 Electron Configurations pages
52
Elements of the Sixth Period
4f and 5d are very close in energy causing many deviations Look at the configurations on the periodic table on the back cover of the book. Chapter 4 Section 3 Electron Configurations pages
53
Chapter 4 Section 3 Electron Configurations pages 110-122
PRACTICE Page 122 #1 & 2 p. 113 1. answer answer 3. answer Chapter 4 Section 3 Electron Configurations pages
54
Chapter 4 Section 3 Electron Configurations pages 110-122
Section 3 Homework Chapter 4 Section 3 Electron Configurations pages
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.