Download presentation
Presentation is loading. Please wait.
Published byTracey Parks Modified over 8 years ago
1
Chapter 15 Alcohols, Diols, and Thiols Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
2
Sources of Alcohols
3
Hydration of alkenes Hydroboration-oxidation of alkenes Hydrolysis of alkyl halides Syntheses using Grignard reagents Organolithium reagents Sources of Alcohols Reactions discussed in earlier chapters (Table 15.1)
4
Reduction of aldehydes and ketones Reduction of carboxylic acids Reaction of Grignard reagents with epoxides Diols by hydroxylation of alkenes Sources of Alcohols New methods in Chapter 15
5
Preparation of Alcohols by Reduction of Aldehydes and Ketones
6
C R HOHOH H C R H O Reduction of Aldehydes Gives Primary Alcohols
7
Pt, ethanol (92%) Example: Catalytic Hydrogenation CH 3 OCH 2 OH O CH 3 OCH + H2H2
8
C R HOHOH R' C R O Reduction of Ketones Gives Secondary Alcohols
9
(93-95%) Example: Catalytic Hydrogenation + H2H2 O Pt ethanol HOH
10
H:–H:– C R HOHOH H C R H O H:–H:– C R HOHOH R' C R O Retrosynthetic Analysis
11
Sodium borohydride Na + – B H H HH Lithium aluminum hydride Li + – Al H H HH Metal Hydride Reducing Agents act as hydride donors
12
Examples: Sodium Borohydride O CH O2NO2N O NaBH 4 methanol (82%) CH 2 OH O2NO2N HOH (84%) NaBH 4 ethanol Aldehyde Ketone
13
Lithium Aluminum Hydride More reactive than sodium borohydride. Cannot use water, ethanol, methanol etc. as solvents. Diethyl ether is most commonly used solvent.
14
Examples: Lithium Aluminum Hydride Aldehyde Ketone O CH 3 (CH 2 ) 5 CH 1. LiAlH 4 diethyl ether 2. H 2 O O (C 6 H 5 ) 2 CHCCH 3 1. LiAlH 4 diethyl ether 2. H 2 O (84%) CH 3 (CH 2 ) 5 CH 2 OH (86%) OH (C 6 H 5 ) 2 CHCHCH 3
15
Neither NaBH 4 or LiAlH 4 reduces carbon-carbon double bonds. O HOH 1. LiAlH 4 diethyl ether 2. H 2 O (90%) Selectivity
16
Preparation of Alcohols By Reduction of Carboxylic Acids
17
lithium aluminum hydride is only effective reducing agent Reduction of Carboxylic Acids Gives Primary Alcohols C R HOHOH H C R HO O
18
Example: Reduction of a Carboxylic Acid 1. LiAlH 4 diethyl ether 2. H 2 O COH O CH 2 OH (78%)
19
Preparation of Alcohols From Epoxides
20
Reaction of Grignard Reagents with Epoxides H2CH2C CH 2 O RMgX CH 2 OMgX R H3O+H3O+ RCH 2 CH 2 OH
21
CH 3 (CH 2 ) 4 CH 2 MgBr H2CH2C CH 2 O + 1. diethyl ether 2. H 3 O + CH 3 (CH 2 ) 4 CH 2 CH 2 CH 2 OH (71%) Example
22
Preparation of Diols
23
Diols are Prepared by... Reactions used to prepare alcohols Hydroxylation of alkenes
24
O O HCCH 2 CHCH 2 CH CH 3 H 2 (100 atm) Ni, 125°C HOCH 2 CH 2 CHCH 2 CH 2 OH CH 3 3-Methyl-1,5-pentanediol (81-83%) Example: Reduction of a Dialdehyde
25
Vicinal diols have hydroxyl groups on adjacent carbons. Ethylene glycol (HOCH 2 CH 2 OH) is most familiar example. Hydroxylation of Alkenes Gives Vicinal Diols
26
Osmium Tetraoxide is Key Reagent C C HOHO OHOH C C OsO 4 O O Os OO C C Cyclic osmate ester
27
(CH 3 ) 3 COOH OsO 4 (cat) tert-Butyl alcohol HO – Example (73%) CH 2 CH 3 (CH 2 ) 7 CH CH 3 (CH 2 ) 7 CHCH 2 OH OHOH
28
Example H H (CH 3 ) 3 COOH OsO 4 (cat) tert-Butyl alcohol HO – (62%) H H OHOH HOHO Stereospecific syn addition of —OH groups to each carbon of double bond
29
Reactions of Alcohols: A Review and a Preview Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.
30
Table 15.2 Review of Reactions of Alcohols Reaction with hydrogen halides Reaction with thionyl chloride Reaction with phosphorous trihalides Acid-catalyzed dehydration Conversion to p-toluenesulfonate esters
31
New Reactions of Alcohols in This Chapter Conversion to ethers Esterification Oxidation Cleavage of vicinal diols
32
Conversion of Alcohols to Ethers
33
RCH 2 O H CH 2 R OH H+H+ RCH 2 OCH 2 RHOH+ Conversion of Alcohols to Ethers Acid-catalyzed Referred to as a "condensation" Equilibrium; most favorable for primary alcohols
34
Example 2CH 3 CH 2 CH 2 CH 2 OH H 2 SO 4, 130°C CH 3 CH 2 CH 2 CH 2 OCH 2 CH 2 CH 2 CH 3 (60%)
35
Mechanism of Formation of Diethyl Ether Step 1: H H OSO 2 OH H H CH 3 CH 2 O OSO 2 OH + – + CH 3 CH 2 O
36
Mechanism of Formation of Diethyl Ether Step 2: H CH 3 CH 2 H + O CH 3 CH 2 O H + + CH 3 CH 2 CH 3 CH 2 O H H H O
37
Step 3: + CH 3 CH 2 CH 3 CH 2 O H OCH 2 CH 3 H + CH 3 CH 2 CH 3 CH 2 O OCH 2 CH 3 H H + Mechanism of Formation of Diethyl Ether
38
Intramolecular Analogue HOCH 2 CH 2 CH 2 CH 2 CH 2 OH H 2 SO 4 130° O (76%) via: O H + O H H Reaction normally works well only for 5- and 6-membered rings.
39
Esterification
40
condensation Fischer esterification acid catalyzed reversible Esterification ROHH2OH2O + H+H+ + R'COH O R'COR O
41
Example of Fischer Esterification H2OH2O + CH 3 OH + COH O COCH 3 O H 2 SO 4 0.1 mol0.6 mol 70% yield based on benzoic acid
42
High yields Not reversible when carried out in presence of pyridine. Reaction of Alcohols with Acyl Chlorides ROHHCl ++ R'CCl O R'COR O
43
pyridine + CCl O2NO2N O CH 3 CH 2 CH 3 OHOH (63%) NO 2 CH 3 CH 2 CH 3 OCOC O Example
44
analogous to reaction with acyl chlorides Reaction of Alcohols with Acid Anhydrides ROH ++ R'COR O O R'COCR' O R'COH O
45
pyridine (83%) + C 6 H 5 CH 2 CH 2 OH O F 3 CCOCCF 3 O C 6 H 5 CH 2 CH 2 OCCF 3 O Example
46
Oxidation of Alcohols
47
Primary alcohols from H 2 O Oxidation of Alcohols RCH 2 OH O RCH O RCOH Secondary alcohols O RCR'RCHR' OH
48
Aqueous solution Mn(VII) Cr(VI) KMnO 4 H 2 CrO 4 H 2 Cr 2 O 7 Typical Oxidizing Agents
49
Aqueous Cr(VI) FCH 2 CH 2 CH 2 CH 2 OH K 2 Cr 2 O 7 H 2 SO 4 H2OH2O FCH 2 CH 2 CH 2 COH (74%) O Na 2 Cr 2 O 7 H 2 SO 4 H2OH2O (85%) H OH O
50
Mechanism Involves formation and elimination of a chromate ester. C OHOH HOCrOH O O H C O H O O CrOH C O O HH
51
All are used in CH 2 Cl 2 Pyridinium dichromate (PDC) (C 5 H 5 NH + ) 2 Cr 2 O 7 2– Pyridinium chlorochromate (PCC) C 5 H 5 NH + ClCrO 3 – Nonaqueous Sources of Cr(VI)
52
Example: Oxidation of a Primary Alcohol with PCC CH 3 (CH 2 ) 5 CH 2 OH PCC CH 2 Cl 2 O CH 3 (CH 2 ) 5 CH (78%) ClCrO 3 – N H +
53
PDCCH 2 Cl 2 O (94%) CH 2 OH (CH 3 ) 3 C CH (CH 3 ) 3 C Example: Oxidation of a Primary Alcohol with PDC
54
Oxidative Cleavage of Vicinal Diols
55
Cleavage of Vicinal Diols by Periodic Acid CC HO OH HIO 4 C O O C +
56
Cleavage of Vicinal Diols by Periodic Acid HIO 4 CHCCH 3 CH 3 OHHO CH 3 CCH 3 O CH O + (83%)
57
Cyclic Diols are Cleaved HIO 4 OH O HCCH 2 CH 2 CH 2 CH O
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.