Presentation is loading. Please wait.

Presentation is loading. Please wait.

Chapter Menu Chapter Introduction Lesson 1Lesson 1Earth’s Motion Lesson 2Lesson 2Earth’s Moon Lesson 3Lesson 3Eclipses and Tides Chapter Wrap-Up Jason.

Similar presentations


Presentation on theme: "Chapter Menu Chapter Introduction Lesson 1Lesson 1Earth’s Motion Lesson 2Lesson 2Earth’s Moon Lesson 3Lesson 3Eclipses and Tides Chapter Wrap-Up Jason."— Presentation transcript:

1

2 Chapter Menu Chapter Introduction Lesson 1Lesson 1Earth’s Motion Lesson 2Lesson 2Earth’s Moon Lesson 3Lesson 3Eclipses and Tides Chapter Wrap-Up Jason Reed/Photodisc/Getty Images

3 Chapter Introduction 1.Earth’s movement around the Sun causes sunrises and sunsets. 2.Earth has seasons because its distance from the Sun changes throughout the year. 3.The Moon was once a planet that orbited the Sun between Earth and Mars. 4.Earth’s shadow causes the changing appearance of the Moon. 5.A solar eclipse happens when Earth moves between the Moon and the Sun. 6.The gravitational pull of the Moon and the Sun on Earth’s oceans causes tides. Do you agree or disagree?

4 Lesson 1 Reading Guide - KC How does Earth move? Why is Earth warmer at the equator and colder at the poles? Why do the seasons change as Earth moves around the Sun? Earth’s Motion

5 Lesson 1 Reading Guide - Vocab orbit revolution rotation rotation axis Earth’s Motion solstice equinox

6 Lesson 1-1 The nearest star to Earth is the Sun. The Sun is approximately 150 million km from Earth. Earth and the Sun

7 Lesson 1-1 Earth moves around the Sun in a nearly circular path. Earth and the Sun (cont.)

8 Lesson 1-1 The path an object follows as it moves around another object is an orbit.orbit The motion of one object around another object is called revolution.revolution Earth makes one complete revolution around the Sun every 365.24 days. Earth and the Sun (cont.)

9 Lesson 1-1 Earth orbits the Sun because the Sun’s gravity pulls on the Earth. Earth and the Sun (cont.)

10 Lesson 1-1 A spinning motion is called rotation.rotation The line on which an object rotates is the rotation axis. rotation axis The tilt of Earth’s rotation axis is always in the same direction by the same amount. During half of Earth’s orbit, the north end of the rotation axis is toward the Sun and during the other half the north end of the rotation axis is away from the Sun. Earth and the Sun (cont.)

11 Lesson 1-2 Because Earth’s surface is curved, different parts of Earth’s surface receive different amounts of the Sun’s energy. Temperature and Latitude

12 Lesson 1-2 Relative to the direction of a beam of sunlight, Earth’s surface tends to become more tilted as you move away from the equator. Temperature and Latitude (cont.) Why is Earth warmer at the equator and colder at the poles?

13 Lesson 1-2 The energy in a beam of sunlight tends to become more spread out the farther you travel from the equator Temperature and Latitude (cont.)

14 Lesson 1-2 Regions near the poles receive less energy than regions near the equator, which means Earth is colder at the poles and warmer at the equator. Temperature and Latitude (cont.)

15 Lesson 1-3 During one half of Earth’s orbit, the north end of the rotation axis is toward the Sun. Seasons

16 Lesson 1-3 Due to Earth’s tilt, the northern hemisphere receives more solar energy. Temperatures increase in the northern hemisphere and decrease in the southern hemisphere. This is when spring and summer happen in the northern hemisphere, and fall and winter happen in the southern hemisphere. Seasons (cont.)

17 Lesson 1-3 During the other half of Earth’s orbit, the north end of the rotation axis is away from the Sun.

18 Lesson 1-3 Due to Earth’s tilt, the southern hemisphere receives more solar energy. Temperatures decrease in the northern hemisphere and increase in the southern hemisphere. This is when fall and winter happen in the northern hemisphere, and spring and summer happen in the southern hemisphere. Seasons (cont.)

19 Lesson 1-3 Seasons (cont.) How does the tilt of Earth’s rotation axis affect Earth’s weather?

20 Lesson 1-3 There are four days each year when the direction of Earth’s rotation axis is special relative to the Sun. Seasons (cont.)

21 Lesson 1-3 A solstice is a day when Earth’s rotation axis is the most toward or away from the Sun.solstice Seasons (cont.)

22 Lesson 1-3 An equinox is a day when Earth’s rotation axis is leaning along Earth’s orbit, neither toward nor away from the Sun.equinox Seasons (cont.)

23 Lesson 1-3 The Sun’s apparent path through the sky in the northern hemisphere is lowest on the December solstice and highest on the June solstice. Seasons (cont.)

24 Lesson 1 - VS The gravitational pull of the Sun causes Earth to revolve around the Sun in a near-circular orbit.

25 Lesson 1 - VS Earth’s rotation axis is tilted and always points in the same direction in space.

26 Lesson 1 - VS Equinoxes and solstices are days when the direction of Earth’s rotation axis relative to the Sun is special.

27 Lesson 1 – LR1 A.Earth B.Sun C.Moon D.none of these Which body’s gravitational pull causes the Earth to orbit the Sun?

28 Lesson 1 – LR2 A.The surface becomes less tilted. B.The surface becomes flat. C.The surface becomes more tilted. D.There is no change in the relationship. Relative to the direction of a beam of sunlight, what happens to Earth’s surface as you move away from the equator?

29 Lesson 1 – LR3 A.orbit B.rotation C.rotation axis D.revolution Which term refers to the motion of one object around another object?

30 Lesson 1 - Now 1.Earth’s movement around the Sun causes sunrises and sunsets. 2.Earth has seasons because its distance from the Sun changes throughout the year. Do you agree or disagree?


Download ppt "Chapter Menu Chapter Introduction Lesson 1Lesson 1Earth’s Motion Lesson 2Lesson 2Earth’s Moon Lesson 3Lesson 3Eclipses and Tides Chapter Wrap-Up Jason."

Similar presentations


Ads by Google