Download presentation
Presentation is loading. Please wait.
Published byKerrie Todd Modified over 9 years ago
1
Topological phase and quantum criptography with spin-orbit entanglement of the photon Universidade Federal Fluminense Instituto de Física - Niterói – RJ - Brasil Antonio Zelaquett Khoury Financial Support: CNPq - CAPES – FAPERJ Financial Support: CNPq - CAPES – FAPERJ INSTITUTO DO MILÊNIO DE INFORMAÇÃO QUÂNTICA
2
Outline Geom. phase for a spin ½ in a magnetic field Geometric quantum computation The Pancharatnam phase Beams carrying OAM Topological phase for entangled states BB84 QKD without a shared reference frame Conclusions
3
Geometric phase of a spin 1/2 in a magnetic field
4
Spin 1/2 in a time dependent magnetic field Spin 1/2 in a time dependent magnetic field BERRY PHASE
5
Geometric quantum computation
6
Geometric conditional phase gate Conditional phase gate J.A. Jones, V. Vedral, A. Ekert, G. Castagnoll, NATURE V.403, 869 (2000) L.-M. Duan, J.I. Cirac, P.Zoller SCIENCE V.292, 1695 (2001)
7
The Pancharatnam phase
8
Pancharatnam phase S. Pancharatnam, Proc. Indian Acad. Sci. Sect. A, V.44, 247 (1956) Collected Works of S. Pancharatnam, Oxford Univ. Press, London (1975).
9
Beams carrying orbital angular momentum
10
Gauss-Laguerre beams carrying OAM (Paraxial Wave Equation) Angular momentum Hermite-Gauss (HG) Rectangular Laguerre-Gauss (LG) Cylindrical
11
Poincaré representation for beams carrying OAM Poincaré representation of first order Gaussian modes Cylindrical lenses at 45 o Astigmatic mode converter
12
Geometric phase from astigmatic mode conversion E.J. Galvez, P.R. Crawford, H.I. Sztul, M.J. Pysher, P.J. Haglin, R.E. Williams, Physical Review Letters V.90, 203901 (2003)
13
Topological phase for entangled states C. E. Rodrigues de Souza, J. A. O. Huguenin and A. Z. Khoury IF-UFF P. Milman LMPQ – Jussieu - France
15
Geometric representation for two-qubit states TWO QUBITS Two Bloch spheres?? Only for product states!!! Bloch sphere (or Poincaré sphere) ONE QUBIT
16
Geometric representation for two-qubit PURE states Bloch ball SO(3) sphere (opposite points identified) Two-qubit PURE STATES (Concurrence) Maximally entangled state Bloch ball colapses to a point!!!! P. Milman and R. Mosseri, Phys. Rev. Lett. 90, 230403 ( 2003 ). P. Milman, Phys. Rev. A 73, 062118 (2006).
17
Topological phase for maximally entangled states Cyclic evolutions preserveing maximal entanglement (“Closed” trajectories) Two homotopy classes: 0-type trajectories π-type trajectories SO(3) sphere
18
Separable polarization-OAM modes
19
Nonseparable polarization-OAM modes Geometric representation on the SO(3) sphere 1 2 3 4
20
Nonseparable mode preparation Holographic preparation of the LG modes PBS
21
Interferometric measurement 1 2 3 4 4’ 1 2 3 4 4 1 (θ = 0 0 ) / 4’ 1 (θ = 90 0 ) 4141 CCD θ = 45 0 θ = - 45 0 θ = 0 0 θ = 0 0, 22.5 0, 45 0, 67.5 0, 90 0
22
Experimental results Unseparable mode Separable mode θ=0 0 θ=22.5 0 θ=45 0 θ=67.5 0 θ=90 0 θ=0 0 θ=22.5 0 θ=45 0 θ=67.5 0 θ=90 0
23
Theoretical expressions Unseparable mode Separable mode
24
Calculated images Unseparable mode Separable mode
25
Partial separability and concurrence Partially separable mode Interference pattern (θ=45 0 ) CONCURRENCE
26
BB84 Quantum key distribution without a shared reference frame C. E. Rodrigues de Souza, C. V. S. Borges, J. A. O. Huguenin and A. Z. Khoury IF-UFF L. Aolita and S. P. Walborn IF-UFRJ
27
The BB84 protocol 0 0 1 1 0 0 1 1 ALICE Bennett and Brassard 1984 Polarizers HV +/- HV +/- Polarizers BOB H- 45 o 45 o V Photons
28
010111100Result HV +/-HV+/- HVBasis 000111101Result HV+/-HV +/-HV+/- Basis 01 1 0 0 Alice and Bob check their basis, but not their results ! ALICE BOB
29
Spin-orbit entanglement Logic basis +/- Logic basis 0/1 Invariant under rotations ! ! ! ! L. Aolita and S. P. Walborn PRL 98, 100501 (2007)
30
BB84 without frame alignment BASIS,,,, Photons,,, Robust against alignment noise ! ! ! ! ALICEBOB
31
Procedure sketch 0 1 + - BOB CNOT X X R(φ) ALICE R(θ)
32
Experimental setup
33
Experimental results Bob’s detector 1 State sent by Alice Bob’s detector 0 Rotation of Alice’s setup Bob’s detector 1 Alice sends 1 Bob’s detector 0, Bob`s detection basis:
34
Conclusions
35
Conclusions Spin-orbit entanglement Topological phase for spin-orbit transformations Potential applications to conditional gates Quantum criptography without frame alignment
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.