Download presentation
Presentation is loading. Please wait.
Published byMerilyn Barker Modified over 9 years ago
1
John Dyer TF-PR, Paris, September 20061 Optical Networking Primer John Dyer TERENA http://www.terena.nl
2
John Dyer TF-PR, Paris, September 20062 Troy – 1200 BC
3
John Dyer TF-PR, Paris, September 20063 Troy – 1200 BC
4
John Dyer TF-PR, Paris, September 20064 Troy – 1200 BC
5
John Dyer TF-PR, Paris, September 20065 Troy – 1200 BC
6
John Dyer TF-PR, Paris, September 20066 Troy to Agamemnon’s palace in Mycenae, 600km Troy – 1200 BC
7
John Dyer TF-PR, Paris, September 20067 le télégraphe optique First real purpose built optical communication device L'invention de : Claude Chappe -1791
8
John Dyer TF-PR, Paris, September 20068 National Optical Network
9
John Dyer TF-PR, Paris, September 20069 Performance 1794 - 230 km between Paris and Lille By 1850 network grew to 556 stations covering 5000 km 20 to 30 seconds per symbol per station in good weather conditions: More than 1 hour the characters on this slide
10
John Dyer TF-PR, Paris, September 200610 Electric Replaces Optical 1816 Francis Ronalds 8 miles of Iron wires 1855 Giovanni Caselli telegraph line between Paris and Lyon
11
John Dyer TF-PR, Paris, September 200611 1876 - Telecommunications goes analogue
12
John Dyer TF-PR, Paris, September 200612 Analogue Signals Source Attenuation Noise Output
13
John Dyer TF-PR, Paris, September 200613 Analogue over copper Copper wire has narrow bandwidth Insufficient for backbones/long haul at high speed
14
John Dyer TF-PR, Paris, September 200614 Sending Digital Signals 0 11 0 0 5 time Volts Coaxial cable 0 11 0 0mW 10mW time Power
15
John Dyer TF-PR, Paris, September 200615 Digital over Analogue 1950’s US Defence 1958 - DARPAnet 1962 – Bell 103 modem 300 bits per second (about 40 characters per second)
16
John Dyer TF-PR, Paris, September 200616 The move to optical transmission 1975 – Bell – 14 Km of waveguide in New Jersey, US 1977 – Bell – live telephony in Chicago 1977 – BT, UK live telephony 1986 – Fibre link across English channel 1988 – TAT-8 First Transatlantic Fibre 280 Mbps and retired in 2002 (14 years)
17
John Dyer TF-PR, Paris, September 200617 Fibre Transmission
18
John Dyer TF-PR, Paris, September 200618 Fibre Optic Cables
19
John Dyer TF-PR, Paris, September 200619 Transmission Chromatic Dispersion Phase Dispersion Attenuation
20
John Dyer TF-PR, Paris, September 200620 Digital can be cleanly regenerated Source Attenuation Noise OutputRegeneration
21
John Dyer TF-PR, Paris, September 200621 Building Blocks
22
John Dyer TF-PR, Paris, September 200622 Building an Optical Network
23
John Dyer TF-PR, Paris, September 200623 Electrical & Optical Devices Classical Electrical Switch O-E-O Switch All Optical Switch Electrical Domain Optical Domain emerging
24
John Dyer TF-PR, Paris, September 200624 Optical Switches - MEMs
25
John Dyer TF-PR, Paris, September 200625 Electromagnetic Spectrum 10 −9 m= nanometre lambda
26
John Dyer TF-PR, Paris, September 200626 Multiple lambdas Don’t forget – λ’s in non-visible 850nm 1600nm1300nm
27
John Dyer TF-PR, Paris, September 200627 Single Wave Length in a single fibre pair
28
John Dyer TF-PR, Paris, September 200628 Wave Division Multiplexing (WDM) in a single pair
29
John Dyer TF-PR, Paris, September 200629 Generalised IP Network
30
John Dyer TF-PR, Paris, September 200630 Backbone Core Optical
31
John Dyer TF-PR, Paris, September 200631 User Classes DSLGigE LAN C A B A Need full Internet routing B Need VPN services on/and full Internet routing C Need very fat pipes, limited multiple Virtual Organizations Source: Cees de Laat, UvA Number of users Bandwidth consumed
32
John Dyer TF-PR, Paris, September 200632 Hybrid Networking
33
John Dyer TF-PR, Paris, September 200633 Getting Access to Fibres Buy or Lease a service IP level or optical path IRU (Indefeasible Right of Use ) Dig it yourself Flexibility & control complexity
34
John Dyer TF-PR, Paris, September 200634 GLIF Global Lambda Integrated Facility
35
John Dyer TF-PR, Paris, September 200635 GLIF Open Lightpath Exchanges GLIF lambdas are interconnected through established exchange points known as GOLEs. GOLEs are comprised of equipment capable of terminating lambdas and performing lightpath switching, allowing end-to-end connections Open connection policy
36
John Dyer TF-PR, Paris, September 200636 Established GOLEs CANARIE-StarLight, Chicago(CANARIE) CANARIE-PNWGP, Seattle(CANARIE) CERN, Switzerland(CERN) KRLight, Seoul(KISTI) MAN LAN, New York(Internet2, NYSERNET, Indiana Uni & IEEAF) NetherLight, Amsterdam(SURFnet) NorthernLight, Stockholm(NORDUnet) Pacific Northwest GigaPoP, Seattle(Consortium of research and education orgs ) StarLight, Chicago(UIC/EVL, NWU/iCAIR & Argonne) T-LEX, Tokyo(WIDE) UKLight, London (UKERNA) UltraLight, Los Angeles(Caltech/NSF)
37
John Dyer TF-PR, Paris, September 200637 GLIF Working Groups TERENA provides GLIF secretariat function Governance & Growth Chair: Kees Neggers (SURFnet) Technical Issues Co-Chairs: Erik-Jan Bos (SURFnet) & René Hatem (CANARIE) Control Plane & Grid Integration Middleware Chair: Gigi Karmous-Edwards (MCNC) Research & Applications Co-Chairs: Maxine Brown (UIC) & Larry Smarr (UCSD)
38
John Dyer TF-PR, Paris, September 200638 References The Telegraph Of Claude Chappe -An Optical Telecommunication Network For The XVIIIth Century http://services3.ieee.org/organizations/history_center/cht_papers/dilhac.pdf Data Communications: The First 2500 Years http://spinroot.com/gerard/pdf/hamburg94b.pdf A Survey of MEMS-Enabled Optical Devices – (January 2006) http://www.iec.org/newsletter/jan06_2/broadband_1.html Wavelength switches and the automated optical network – Status & outlook (2005) http://www.telenor.com/telektronikk/volumes/pdf/2.2005/Page_081-086.pdf GLIF website http://www.glif.is
39
John Dyer TF-PR, Paris, September 200639 Good luck with finding your way home
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.