Download presentation
Presentation is loading. Please wait.
Published byPaul Harmon Modified over 9 years ago
1
1 Titration Curve of a Weak Base with a Strong Acid
2
2 Titration of a Polyprotic Acid if K a1 >> K a2, there will be two equivalence points in the titration the closer the K a ’s are to each other, the less distinguishable the equivalence points are if K a1 >> K a2, there will be two equivalence points in the titration the closer the K a ’s are to each other, the less distinguishable the equivalence points are titration of 25.0 mL of 0.100 M H 2 SO 3 with 0.100 M NaOH
3
3 Monitoring pH During a Titration the general method for monitoring the pH during the course of a titration is to measure the conductivity of the solution due to the [H 3 O + ] using a probe that specifically measures just H 3 O + the endpoint of the titration is reached at the equivalence point in the titration – at the inflection point of the titration curve if you just need to know the amount of titrant added to reach the endpoint, we often monitor the titration with an indicator the general method for monitoring the pH during the course of a titration is to measure the conductivity of the solution due to the [H 3 O + ] using a probe that specifically measures just H 3 O + the endpoint of the titration is reached at the equivalence point in the titration – at the inflection point of the titration curve if you just need to know the amount of titrant added to reach the endpoint, we often monitor the titration with an indicator
4
4 Monitoring pH During a Titration
5
5 Indicators many dyes change color depending on the pH of the solution these dyes are weak acids, establishing an equilibrium with the H 2 O and H 3 O + in the solution HInd (aq) + H 2 O (l) Ind - (aq) + H 3 O + (aq) the color of the solution depends on the relative concentrations of Ind - :HInd ≈ 1, the color will be mix of the colors of Ind - and HInd when Ind - :HInd > 10, the color will be mix of the colors of Ind - when Ind - :HInd < 0.1, the color will be mix of the colors of HInd many dyes change color depending on the pH of the solution these dyes are weak acids, establishing an equilibrium with the H 2 O and H 3 O + in the solution HInd (aq) + H 2 O (l) Ind - (aq) + H 3 O + (aq) the color of the solution depends on the relative concentrations of Ind - :HInd ≈ 1, the color will be mix of the colors of Ind - and HInd when Ind - :HInd > 10, the color will be mix of the colors of Ind - when Ind - :HInd < 0.1, the color will be mix of the colors of HInd
6
6 Phenolphthalein
7
7 Methyl Red
8
8 Monitoring a Titration with an Indicator for most titrations, the titration curve shows a very large change in pH for very small additions of base near the equivalence point an indicator can therefore be used to determine the endpoint of the titration if it changes color within the same range as the rapid change in pH pK a of HInd ≈ pH at equivalence point for most titrations, the titration curve shows a very large change in pH for very small additions of base near the equivalence point an indicator can therefore be used to determine the endpoint of the titration if it changes color within the same range as the rapid change in pH pK a of HInd ≈ pH at equivalence point
9
9 Acid-Base Indicators
10
10 Solubility Equilibria all ionic compounds dissolve in water to some degree however, many compounds have such low solubility in water that we classify them as insoluble we can apply the concepts of equilibrium to salts dissolving, and use the equilibrium constant for the process to measure relative solubilities in water all ionic compounds dissolve in water to some degree however, many compounds have such low solubility in water that we classify them as insoluble we can apply the concepts of equilibrium to salts dissolving, and use the equilibrium constant for the process to measure relative solubilities in water
11
11 Solubility Product the equilibrium constant for the dissociation of a solid salt into its aqueous ions is called the solubility product, K sp for an ionic solid M n X m, the dissociation reaction is: M n X m (s) nM m+ (aq) + mX n− (aq) the solubility product would be K sp = [M m+ ] n [X n− ] m for example, the dissociation reaction for PbCl 2 is PbCl 2 (s) Pb 2+ (aq) + 2 Cl − (aq) and its equilibrium constant is K sp = [Pb 2+ ][Cl − ] 2 the equilibrium constant for the dissociation of a solid salt into its aqueous ions is called the solubility product, K sp for an ionic solid M n X m, the dissociation reaction is: M n X m (s) nM m+ (aq) + mX n− (aq) the solubility product would be K sp = [M m+ ] n [X n− ] m for example, the dissociation reaction for PbCl 2 is PbCl 2 (s) Pb 2+ (aq) + 2 Cl − (aq) and its equilibrium constant is K sp = [Pb 2+ ][Cl − ] 2
12
12
13
13 Molar Solubility solubility is the amount of solute that will dissolve in a given amount of solution at a particular temperature the molar solubility is the number of moles of solute that will dissolve in a liter of solution the molarity of the dissolved solute in a saturated solution for the general reaction M n X m (s) nM m+ (aq) + mX n− (aq) solubility is the amount of solute that will dissolve in a given amount of solution at a particular temperature the molar solubility is the number of moles of solute that will dissolve in a liter of solution the molarity of the dissolved solute in a saturated solution for the general reaction M n X m (s) nM m+ (aq) + mX n− (aq)
14
14 Calculate the molar solubility of PbCl2 in pure water at 25°C Write the dissociation reaction and K sp expression Create an ICE table defining the change in terms of the solubility of the solid [Pb 2+ ][Cl − ] Initial00 Change+S+2S EquilibriumS2S PbCl 2 (s) Pb 2+ (aq) + 2 Cl − (aq) K sp = [Pb 2+ ][Cl − ] 2
15
15 Calculate the molar solubility of PbCl2 in pure water at 25°C Substitute into the K sp expression Find the value of K sp from Table 16.2, plug into the equation and solve for S [Pb 2+ ][Cl − ] Initial00 Change+S+2S EquilibriumS2S K sp = [Pb 2+ ][Cl − ] 2 K sp = (S)(2S) 2
16
16 Determine the K sp of PbBr 2 if its molar solubility in water at 25°C is 1.05 x 10 -2 M
17
17 Determine the K sp of PbBr 2 if its molar solubility in water at 25°C is 1.05 x 10 -2 M Write the dissociation reaction and K sp expression Create an ICE table defining the change in terms of the solubility of the solid [Pb 2+ ][Br − ] Initial00 Change+(1.05 x 10 -2 )+2(1.05 x 10 -2 ) Equilibrium(1.05 x 10 -2 )(2.10 x 10 -2 ) PbBr 2 (s) Pb 2+ (aq) + 2 Br − (aq) K sp = [Pb 2+ ][Br − ] 2
18
18 Determine the K sp of PbBr 2 if its molar solubility in water at 25°C is 1.05 x 10 -2 M Substitute into the K sp expression plug into the equation and solve K sp = [Pb 2+ ][Br − ] 2 K sp = (1.05 x 10 -2 )(2.10 x 10 -2 ) 2 [Pb 2+ ][Br − ] Initial00 Change+(1.05 x 10 -2 )+2(1.05 x 10 -2 ) Equilibrium(1.05 x 10 -2 )(2.10 x 10 -2 )
19
19 K sp and Relative Solubility molar solubility is related to K sp but you cannot always compare solubilities of compounds by comparing their K sp s in order to compare K sp s, the compounds must have the same dissociation stoichiometry molar solubility is related to K sp but you cannot always compare solubilities of compounds by comparing their K sp s in order to compare K sp s, the compounds must have the same dissociation stoichiometry
20
20 The Effect of Common Ion on Solubility addition of a soluble salt that contains one of the ions of the “insoluble” salt, decreases the solubility of the “insoluble” salt for example, addition of NaCl to the solubility equilibrium of solid PbCl 2 decreases the solubility of PbCl 2 PbCl 2 (s) Pb 2+ (aq) + 2 Cl − (aq) addition of a soluble salt that contains one of the ions of the “insoluble” salt, decreases the solubility of the “insoluble” salt for example, addition of NaCl to the solubility equilibrium of solid PbCl 2 decreases the solubility of PbCl 2 PbCl 2 (s) Pb 2+ (aq) + 2 Cl − (aq) addition of Cl − shifts the equilibrium to the left
21
21 Calculate the molar solubility of CaF2 in 0.100 M NaF at 25°C Write the dissociation reaction and K sp expression Create an ICE table defining the change in terms of the solubility of the solid [Ca 2+ ][F − ] Initial00.100 Change+S+2S EquilibriumS0.100 + 2S CaF 2 (s) Ca 2+ (aq) + 2 F − (aq) K sp = [Ca 2+ ][F − ] 2
22
22 Calculate the molar solubility of CaF2 in 0.100 M NaF at 25°C Substitute into the K sp expression assume S is small Find the value of K sp from Table 16.2, plug into the equation and solve for S [Ca 2+ ][F − ] Initial00.100 Change+S+2S EquilibriumS0.100 + 2S K sp = [Ca 2+ ][F − ] 2 K sp = (S)(0.100 + 2S) 2 K sp = (S)(0.100) 2
23
23 The Effect of pH on Solubility for insoluble ionic hydroxides, the higher the pH, the lower the solubility of the ionic hydroxide and the lower the pH, the higher the solubility higher pH = increased [OH − ] M(OH) n (s) M n+ (aq) + nOH − (aq) for insoluble ionic compounds that contain anions of weak acids, the lower the pH, the higher the solubility M 2 (CO 3 ) n (s) 2 M n+ (aq) + nCO 3 2− (aq) H 3 O + (aq) + CO 3 2− (aq) HCO 3 − (aq) + H 2 O(l) for insoluble ionic hydroxides, the higher the pH, the lower the solubility of the ionic hydroxide and the lower the pH, the higher the solubility higher pH = increased [OH − ] M(OH) n (s) M n+ (aq) + nOH − (aq) for insoluble ionic compounds that contain anions of weak acids, the lower the pH, the higher the solubility M 2 (CO 3 ) n (s) 2 M n+ (aq) + nCO 3 2− (aq) H 3 O + (aq) + CO 3 2− (aq) HCO 3 − (aq) + H 2 O(l)
24
24 Precipitation precipitation will occur when the concentrations of the ions exceed the solubility of the ionic compound if we compare the reaction quotient, Q, for the current solution concentrations to the value of K sp, we can determine if precipitation will occur Q = K sp, the solution is saturated, no precipitation Q < K sp, the solution is unsaturated, no precipitation Q > K sp, the solution would be above saturation, the salt above saturation will precipitate some solutions with Q > K sp will not precipitate unless disturbed – these are called supersaturated solutions precipitation will occur when the concentrations of the ions exceed the solubility of the ionic compound if we compare the reaction quotient, Q, for the current solution concentrations to the value of K sp, we can determine if precipitation will occur Q = K sp, the solution is saturated, no precipitation Q < K sp, the solution is unsaturated, no precipitation Q > K sp, the solution would be above saturation, the salt above saturation will precipitate some solutions with Q > K sp will not precipitate unless disturbed – these are called supersaturated solutions
25
25 precipitation occurs if Q > K sp a supersaturated solution will precipitate if a seed crystal is added
26
26 Selective Precipitation a solution containing several different cations can often be separated by addition of a reagent that will form an insoluble salt with one of the ions, but not the others a successful reagent can precipitate with more than one of the cations, as long as their K sp values are significantly different a solution containing several different cations can often be separated by addition of a reagent that will form an insoluble salt with one of the ions, but not the others a successful reagent can precipitate with more than one of the cations, as long as their K sp values are significantly different
27
27 What is the minimum [OH − ] necessary to just begin to precipitate Mg 2+ (with [0.059]) from seawater assuming K sp =2.06x10 -13 )? precipitating may just occur when Q = K sp
28
28 What is the [Mg 2+ ] when Ca 2+ (with [0.011]) just begins to precipitate from seawater? precipitating Mg 2+ begins when [OH − ] = 1.9 x 10 -6 M
29
29 What is the [Mg 2+ ] when Ca 2+ (with [0.011]) just begins to precipitate from seawater? precipitating Mg 2+ begins when [OH − ] = 1.9 x 10 -6 M precipitating Ca 2+ begins when [OH − ] = 2.06 x 10 -2 M when Ca 2+ just begins to precipitate out, the [Mg 2+ ] has dropped from 0.059 M to 4.8 x 10 -10 M
30
30 Qualitative Analysis an analytical scheme that utilizes selective precipitation to identify the ions present in a solution is called a qualitative analysis scheme wet chemistry a sample containing several ions is subjected to the addition of several precipitating agents addition of each reagent causes one of the ions present to precipitate out an analytical scheme that utilizes selective precipitation to identify the ions present in a solution is called a qualitative analysis scheme wet chemistry a sample containing several ions is subjected to the addition of several precipitating agents addition of each reagent causes one of the ions present to precipitate out
31
31 Qualitative Analysis
32
32
33
33 Group 1 group one cations are Ag +, Pb 2+, and Hg 2 2+ all these cations form compounds with Cl − that are insoluble in water as long as the concentration is large enough PbCl 2 may be borderline molar solubility of PbCl 2 = 1.43 x 10 -2 M precipitated by the addition of HCl group one cations are Ag +, Pb 2+, and Hg 2 2+ all these cations form compounds with Cl − that are insoluble in water as long as the concentration is large enough PbCl 2 may be borderline molar solubility of PbCl 2 = 1.43 x 10 -2 M precipitated by the addition of HCl
34
34 Group 2 group two cations are Cd 2+, Cu 2+, Bi 3+, Sn 4+, As 3+, Pb 2+, Sb 3+, and Hg 2+ all these cations form compounds with HS − and S 2− that are insoluble in water at low pH precipitated by the addition of H 2 S in HCl group two cations are Cd 2+, Cu 2+, Bi 3+, Sn 4+, As 3+, Pb 2+, Sb 3+, and Hg 2+ all these cations form compounds with HS − and S 2− that are insoluble in water at low pH precipitated by the addition of H 2 S in HCl
35
35 Group 3 group three cations are Fe 2+, Co 2+, Zn 2+, Mn 2+, Ni 2+ precipitated as sulfides; as well as Cr 3+, Fe 3+, and Al 3+ precipitated as hydroxides all these cations form compounds with S 2− that are insoluble in water at high pH precipitated by the addition of H 2 S in NaOH group three cations are Fe 2+, Co 2+, Zn 2+, Mn 2+, Ni 2+ precipitated as sulfides; as well as Cr 3+, Fe 3+, and Al 3+ precipitated as hydroxides all these cations form compounds with S 2− that are insoluble in water at high pH precipitated by the addition of H 2 S in NaOH
36
36 Group 4 group four cations are Mg 2+, Ca 2+, Ba 2+ all these cations form compounds with PO 4 3− that are insoluble in water at high pH precipitated by the addition of (NH 4 ) 2 HPO 4 group four cations are Mg 2+, Ca 2+, Ba 2+ all these cations form compounds with PO 4 3− that are insoluble in water at high pH precipitated by the addition of (NH 4 ) 2 HPO 4
37
37 Group 5 group five cations are Na +, K +, NH 4 + all these cations form compounds that are soluble in water – they do not precipitate identified by the color of their flame group five cations are Na +, K +, NH 4 + all these cations form compounds that are soluble in water – they do not precipitate identified by the color of their flame
38
38 Complex Ion Formation transition metals tend to be good Lewis acids they often bond to one or more H 2 O molecules to form a hydrated ion H 2 O is the Lewis base, donating electron pairs to form coordinate covalent bonds Ag + (aq) + 2 H 2 O(l) Ag(H 2 O) 2 + (aq) ions that form by combining a cation with several anions or neutral molecules are called complex ions e.g., Ag(H 2 O) 2 + the attached ions or molecules are called ligands e.g., H 2 O transition metals tend to be good Lewis acids they often bond to one or more H 2 O molecules to form a hydrated ion H 2 O is the Lewis base, donating electron pairs to form coordinate covalent bonds Ag + (aq) + 2 H 2 O(l) Ag(H 2 O) 2 + (aq) ions that form by combining a cation with several anions or neutral molecules are called complex ions e.g., Ag(H 2 O) 2 + the attached ions or molecules are called ligands e.g., H 2 O
39
39 Complex Ion Equilibria if a ligand is added to a solution that forms a stronger bond than the current ligand, it will replace the current ligand Ag(H 2 O) 2 + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) + 2 H 2 O (l) generally H 2 O is not included, since its complex ion is always present in aqueous solution Ag + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) if a ligand is added to a solution that forms a stronger bond than the current ligand, it will replace the current ligand Ag(H 2 O) 2 + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) + 2 H 2 O (l) generally H 2 O is not included, since its complex ion is always present in aqueous solution Ag + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq)
40
40 Formation Constant the reaction between an ion and ligands to form a complex ion is called a complex ion formation reaction Ag + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) the equilibrium constant for the formation reaction is called the formation constant, K f the reaction between an ion and ligands to form a complex ion is called a complex ion formation reaction Ag + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) the equilibrium constant for the formation reaction is called the formation constant, K f
41
41 Formation Constants
42
42 200.0 mL of 1.5 x 10 -3 M Cu(NO 3 ) 2 is mixed with 250.0 mL of 0.20 M NH 3. What is the [Cu 2+ ] at equilibrium? Write the formation reaction and K f expression. Look up K f value Determine the concentration of ions in the diluted solutions Cu 2+ (aq) + 4 NH 3 (aq) Cu(NH 3 ) 4 2+ (aq)
43
43 200.0 mL of 1.5 x 10 -3 M Cu(NO 3 ) 2 is mixed with 250.0 mL of 0.20 M NH 3. What is the [Cu 2+ ] at equilibrium? Create an ICE table. Since K f is large, assume all the Cu 2+ is converted into complex ion, then the system returns to equilibrium [Cu 2+ ][NH 3 ][Cu(NH 3 ) 2 2+ ] Initial6.7E-40.110 Change-≈6.7E-4-4(6.7E-4)+ 6.7E-4 Equilibriumx0.116.7E-4 Cu 2+ (aq) + 4 NH 3 (aq) Cu(NH 3 ) 4 2+ (aq)
44
44 200.0 mL of 1.5 x 10 -3 M Cu(NO 3 ) 2 is mixed with 250.0 mL of 0.20 M NH 3. What is the [Cu 2+ ] at equilibrium? Cu 2+ (aq) + 4 NH 3 (aq) Cu(NH 3 ) 2 2+ (aq) Substitute in and solve for x confirm the “x is small” approximation [Cu 2+ ][NH 3 ][Cu(NH 3 ) 2 2+ ] Initial6.7E-40.110 Change-≈6.7E-4-4(6.7E-4)+ 6.7E-4 Equilibriumx0.116.7E-4 since 2.7 x 10 -13 << 6.7 x 10 -4, the approximation is valid
45
45 The Effect of Complex Ion Formation on Solubility the solubility of an ionic compound that contains a metal cation that forms a complex ion increases in the presence of aqueous ligands AgCl (s) Ag + (aq) + Cl − (aq) K sp = 1.77 x 10 -10 Ag + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) K f = 1.7 x 10 7 adding NH 3 to a solution in equilibrium with AgCl (s) increases the solubility of Ag + the solubility of an ionic compound that contains a metal cation that forms a complex ion increases in the presence of aqueous ligands AgCl (s) Ag + (aq) + Cl − (aq) K sp = 1.77 x 10 -10 Ag + (aq) + 2 NH 3(aq) Ag(NH 3 ) 2 + (aq) K f = 1.7 x 10 7 adding NH 3 to a solution in equilibrium with AgCl (s) increases the solubility of Ag +
46
46
47
47 Solubility of Amphoteric Metal Hydroxides many metal hydroxides are insoluble all metal hydroxides become more soluble in acidic solution shifting the equilibrium to the right by removing OH − some metal hydroxides also become more soluble in basic solution acting as a Lewis base forming a complex ion substances that behave as both an acid and base are said to be amphoteric some cations that form amphoteric hydroxides include Al 3+, Cr 3+, Zn 2+, Pb 2+, and Sb 2+ many metal hydroxides are insoluble all metal hydroxides become more soluble in acidic solution shifting the equilibrium to the right by removing OH − some metal hydroxides also become more soluble in basic solution acting as a Lewis base forming a complex ion substances that behave as both an acid and base are said to be amphoteric some cations that form amphoteric hydroxides include Al 3+, Cr 3+, Zn 2+, Pb 2+, and Sb 2+
48
48 Al 3+ Al 3+ is hydrated in water to form an acidic solution Al(H 2 O) 6 3+ (aq) + H 2 O (l) Al(H 2 O) 5 (OH) 2+ (aq) + H 3 O + (aq) addition of OH − drives the equilibrium to the right and continues to remove H from the molecules Al(H 2 O) 5 (OH) 2+ (aq) + OH − (aq) Al(H 2 O) 4 (OH) 2 + (aq) + H 2 O (l) Al(H 2 O) 4 (OH) 2 + (aq) + OH − (aq) Al(H 2 O) 3 (OH) 3(s) + H 2 O (l) Al 3+ is hydrated in water to form an acidic solution Al(H 2 O) 6 3+ (aq) + H 2 O (l) Al(H 2 O) 5 (OH) 2+ (aq) + H 3 O + (aq) addition of OH − drives the equilibrium to the right and continues to remove H from the molecules Al(H 2 O) 5 (OH) 2+ (aq) + OH − (aq) Al(H 2 O) 4 (OH) 2 + (aq) + H 2 O (l) Al(H 2 O) 4 (OH) 2 + (aq) + OH − (aq) Al(H 2 O) 3 (OH) 3(s) + H 2 O (l)
49
49
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.