Presentation is loading. Please wait.

Presentation is loading. Please wait.

Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 1010101011101010101001011010010100101001110101001000100101011101010110101010.

Similar presentations


Presentation on theme: "Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 1010101011101010101001011010010100101001110101001000100101011101010110101010."— Presentation transcript:

1 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 1010101011101010101001011010010100101001110101001000100101011101010110101010 1110101010100101101001010010100111010100100010010101110101011010101011101010 1010010110100101001010011101010010001001010111010101101010101110101010100101 1010010100101001110101001000100101011101010110101010111010101010010110100101 0010100111010100100010010101110101011010101011101010101001011010010100101001 1101010010001001010111010101101010101110101010100101101001010010100111010100 1000100101011101010110101010111010101010010110100101001010011101010010001001 0101110101011010101011101010101001011010010100101001110101001000100101011101 0101101010101110101010100101101001010010100111010100100010010101110101011010 1010111010101010010110100101001010011101010010001001010111010101101010101110 1010101001011010010100101001110101001000100101011101010110101010111010101010 0101101001010010100111010100100010010101110101011010101011101010101001011010 0101001010011101010010001001010111010101101010101110101010100101101001010010 1001110101001000100101011101010110101010111010101010010110100101001010011101 0100100010010101110101011010101011101010101001011010010100101001110101001000 1001010111010101101010101110101010100101101001010010100111010100100010010101 1101010110101010111010101010010110100101001010011101010010001001010111010101 1010101011101010101001011010010100101001110101001000100101011101010110101010 1110101010100101101001010010100111010100100010010101110101011010101011101010 1010010110100101001010011101010010001001010111010101101010101110101010100101 1010010100101001110101001000100101011101010110101010111010101010010110100101 0010100111010100100010010101110101011010101011101010101001011010010100101001 1101010010001001010111010101101010101110101010100101101001010010100111010100 1000100101011101010110101010111010101010010110100101001010011101010010001001 0101110101011010101011101010101001011010010100101001110101001000100101011101 0101101010101110101010100101101001010010100111010100100010010101110101011010 1010111010101010010110100101001010011101010010001001010111010101101010101110 1010101001011010010100101001110101001000100101011101010110101010111010101010 0101101001010010100111010100100010010101110101011010101011101010101001011010 0101001010011101010010001001010111010101101010101110101010100101101001010010 1001110101001000100101011101010110101010111010101010010110100101001010011101 0100100010010101110101011010101011101010101001011010010100101001110101001000 Bringing order to chaos New data-mining techniques for new surveys Peter-Christian Zinn Astronomical Institute of Ruhr-University, Bochum, Germany CSIRO Astronomy & Space Science, Sydney, Australia RUHR-UNIVERSITÄT BOCHUM

2 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand Why new data handling techniques? New radio surveys will produce lots of data! − ASKAP/EMU ~ 70 million objects − LOFAR/Tier 1 ~ 7 million objects − WSRT/WODAN ~ 10 million objects New optical/NIR surveys will produce even more data! − Pan-STARRS/PS1-3π ~ 5-30 billion objects − LSST/Galaxy “gold sample“ ~ 10 billion objects Astronomers go wild! − Tera-, exa-, petabyte scale ∑~70 million Norris et al. (2011) LSST Science Book Mostly no spectra available

3 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 3/10 Implications for survey science There are no spectroscopic redshifts − Redshift information must be accessed on other ways → photometric (better: statistical) redshifts There are no spectral classifications − Classification of an object must be inferred on other ways → Flux ratios or SED-fitting (better: kNN classification) becomes more important There are no spectroscopically derived parameters − Classic parameters such as metallicity must be derived on other ways → scaling relations (better: kNN regression) must be utilized

4 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand Common approaches Define plain color criteria Model SEDs Look for morphology, scaling relations,... − PROs: ◦ Physically motivated ◦ Easy to reproduce in 2d diagrams ◦ High completeness − CONs: ◦ Global model ◦ Does not work for high dimensions ◦ Many false positive candidates Fan et al. 2001

5 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 5/10 use k-Nearest Neighbours − local model − works fine in high dimensions − does not require physical assumptions − good reference samples available ? Our approach: k nearest neighbors 4 00 0 mean=1 median=0

6 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 6/10 PCZ, Polsterer & Gieseke (subm.) Example 1: statistical redshifts stat-z for ATLAS − ATLAS has spec-z for ~30% of all objects − Training with 12-band data (ugriz,IRAC,MIPS24,13cm,20cm) Advantages of statistical redshifts − No assumptions must be made (no template SEDs, luminosity range, dust reddening, flux homogenization,...) − Computation much faster than for class. photo-z (t stat- z ~ n * log 2 (n) | t photo-z ~ n α, α>2) Comparison: Cardamone et al. (2010) 14-band photo-z: 0.026 PCZ, Polsterer & Gieseke (subm.)

7 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 7/10 Redshift estimation for SDSS quasars kNN regression model + selected reference set − 77,000 references reduced to 1,100 objects − optimized for z > 4.8 − 4 colors used Laurino et al. (2011) Polsterer, PCZ & Gieseke (2012)

8 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 8/10 Example 2: object classification SF / AGN separation − Classical tool: BPT-diagram (requires spectroscopy) − Alternative: MIR color-color selection (not very reliable) − SED fitting (work-intensive) − kNN-based classification of ATLAS test- sample yields combined false classification rate of 9% − Smolcic et al. (2008) achieve contamination rates between 15% - 20% using a highly sophisticated photometric method PCZ et al. (in prep)

9 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 9/10 Example 3: metallicity Metallicity from L-Z relation − Spectroscopic input: SDSS metallicities as derived by Brinchman et al. (2004) − L r -Z relation calibrated by the 2dF survey (Lamareille et al. 2004) applied to Galactic extinction-corrected fluxes − No other assumptions made Metallicity from kNN regression − Spectroscopic input: SDSS metallici-ties derived by Brinchman+ (2004) − kNN regression with respect to the 90 nearest neighbors − No other assumptions made PCZ, Polsterer & Gieseke (subm.)

10 Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 10/10 Summary We presented the first results of utilizing advanced machine- learning techniques to classify/analyze large data sets. Dealing with large data sets will become increasingly important due to the enormous amounts of data forthcoming (radio) surveys will produce. A k nearest neighbor-based approach was tested on available data from ATLAS, COSMOS and the SDSS. Results for redshifts, object classifications and the regressional computation of astrophysical quantities (e.g. metallicity) all yield promising results. Data-mining will already play an important role in currently upcoming projects, e.g. ASKAP/EMU.


Download ppt "Peter-Christian Zinn | Bringing order to chaos | SKANZ 2012 | Auckland, New Zealand 1010101011101010101001011010010100101001110101001000100101011101010110101010."

Similar presentations


Ads by Google