Download presentation
Presentation is loading. Please wait.
Published byJessica Davis Modified over 9 years ago
1
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 1 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics §9.3b Base 10 & e Logs
2
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 2 Bruce Mayer, PE Chabot College Mathematics Review § Any QUESTIONS About §9.3 → Introduction to Logarithms Any QUESTIONS About HomeWork §9.3 → HW-44 9.3 MTH 55
3
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 3 Bruce Mayer, PE Chabot College Mathematics Common Logarithms The logarithm with base 10 is called the common logarithm and is denoted by omitting the base: logx = log 10 x. So y = logx if and only if x = 10 y Applying the basic properties of logs 1.log(10) = 1 2.log(1) = 0 3.log(10 x ) = x 4.10 logx = x
4
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 4 Bruce Mayer, PE Chabot College Mathematics Common Log Convention By this Mathematics CONVENTION the abbreviation log, with no base written, is understood to mean logarithm base 10, or a common logarithm. Thus, log21 = log 10 21 On most calculators, the key for common logarithms is marked LOG
5
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 5 Bruce Mayer, PE Chabot College Mathematics Example Calc Common Log Use a calculator to approximate each common logarithm. Round to the nearest thousandth if necessary. a. log(456)b. log(0.00257) Solution by Calculator LOG key log(456) ≈ 2.659 → 10 2.659 = 456 log(0.00257) ≈ −2.5901 → 10 −2.5901 = 0.00257
6
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 6 Bruce Mayer, PE Chabot College Mathematics Example Calc Common Log Use a scientific calculator to approximate each number to 4 decimals Use a scientific calculator to find a) b)
7
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 7 Bruce Mayer, PE Chabot College Mathematics Example Sound Intensity This function is sometimes used to calculate sound intensity Where d ≡ the intensity in decibels, I ≡ the intensity watts per unit of area I 0 ≡ the faintest audible sound to the average human ear, which is 10 −12 watts per square meter (1x10 −12 W/m 2 ).
8
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 8 Bruce Mayer, PE Chabot College Mathematics Example Sound Intensity Use the Sound Intensity Equation (a.k.a. the “dBA” Eqn) to find the intensity level of sounds at a decibel level of 75 dB? Solution: We need to isolate the intensity, I, in the dBA eqn
9
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 9 Bruce Mayer, PE Chabot College Mathematics Example Sound Intensity Solution (cont.) in the dBA eqn substitute 75 for d and 10 −12 for I 0 and then solve for I
10
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 10 Bruce Mayer, PE Chabot College Mathematics Example Sound Intensity Thus the Sound Intensity at 75 dB is 10 −4.5 W/m 2 = 10 −9/2 W/m 2 Using a Scientific calculator and find that I = 3.162x10 −5 W/m 2 = 31.6 µW/m 2
11
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 11 Bruce Mayer, PE Chabot College Mathematics Example Sound Intensity Check If the sound intensity is 10 −4.5 W/m 2, verify that the decibel reading is 75.
12
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 12 Bruce Mayer, PE Chabot College Mathematics Graph log by Translation Sketch the graph of y = 2 − log(x − 2) Soln: Graph f(x) = logx and shift Rt 2 units
13
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 13 Bruce Mayer, PE Chabot College Mathematics Graph log by Translation Reflect in x-axis Shift UP 2 units
14
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 14 Bruce Mayer, PE Chabot College Mathematics Example Total Recall The function P = 95 – 99∙logx models the percent, P, of students who recall the important features of a classroom lecture over time, where x is the number of days that have elapsed since the lecture was given. What percent of the students recall the important features of a lecture 8 days after it was given?
15
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 15 Bruce Mayer, PE Chabot College Mathematics Example Total Recall Solution: Evaluate P = 95 – 99logx when x = 8. P = 95 – 99log(8) P = 95 – 99(0.903) [using a calculator] P = 95 – 89 P = 6 Thus about 6% of the students remember the important features of a lecture 8 days after it is given
16
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 16 Bruce Mayer, PE Chabot College Mathematics Natural Logarithms Logarithms to the base “e” are called natural logarithms, or Napierian logarithms, in honor of John Napier, who first “discovered” logarithms. The abbreviation “ln” is generally used with natural logarithms. Thus, ln 21 = log e 21. On most calculators, the key for natural logarithms is marked LN
17
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 17 Bruce Mayer, PE Chabot College Mathematics Natural Logarithms The logarithm with base e is called the natural logarithm and is denoted by ln x. That is, ln x = log e x. So y = lnx if and only if x = e y Applying the basic properties of logs 1.ln(e) = 1 2.ln(1) = 0 3.ln(e x ) = x 4.e lnx = x
18
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 18 Bruce Mayer, PE Chabot College Mathematics Example Evaluate ln Evaluate each expression Solution (Use a calculator.)
19
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 19 Bruce Mayer, PE Chabot College Mathematics Example Compound Interest In a Bank Account that Compounds CONTINUOUSLY the relationship between the $-Principal, P, deposited, the Interest rate, r, the Compounding time-period, t, and the $-Amount, A, in the Account:
20
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 20 Bruce Mayer, PE Chabot College Mathematics Example Compound Interest If an account pays 8% annual interest, compounded continuously, how long will it take a deposit of $25,000 to produce an account balance of $100,000? Familiarize In the Compounding Eqn replace P with 25,000, r with 0.08, A with $100,000, and then simplify.
21
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 21 Bruce Mayer, PE Chabot College Mathematics Example Compound Interest Solution Substitute. Divide. Approximate using a calculator. State Answer The account balance will reach $100,000 in about 17.33 years.
22
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 22 Bruce Mayer, PE Chabot College Mathematics Example Compound Interest Check: Because 17.33 was not the exact time, $100,007.45 is reasonable for the Chk
23
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 23 Bruce Mayer, PE Chabot College Mathematics WhiteBoard Work Problems From §9.3 Exercise Set 52, 58, 64, 70, 72, 90 Loud Noise Safe Exposure Time
24
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 24 Bruce Mayer, PE Chabot College Mathematics All Done for Today “e” to Several Digits e = 2.7182818284590452353602874713526624 97757247093699959574966967627724076 63035354759457138217852516642742746 63919320030599218174135966290435729 00334295260595630738132328627943490 76323382988075319525101901157383418 79307021540891499348841675092447614 60668082264800168477411853742345442 43710753907774499206955170276183860 62613313845830007520449338265602976 06737113200709328709127443747047230 69697720931014169283681902551510865 746377211125238978442505695369677078 54499699679468644549059879316368892 30098793127736178215424999229576351 48220826989519366803318252886939849 64651058209392398294887933203625094 43117301238197068416140397019837679 32068328237646480429531180232878250 9819455815301756717361332069811250
25
BMayer@ChabotCollege.edu MTH55_Lec-61_sec_9-3b_Com-n-Nat_Logs.ppt 25 Bruce Mayer, PE Chabot College Mathematics Bruce Mayer, PE Licensed Electrical & Mechanical Engineer BMayer@ChabotCollege.edu Chabot Mathematics Appendix –
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.