Download presentation
Presentation is loading. Please wait.
Published byEvelyn Marshall Gaines Modified over 8 years ago
1
MTH 125 Calculus I
2
SECTION 1.5 Inverse Functions
3
Inverse of a Function Definition (p. 37) Note
4
Pictorial Representation
5
Example 1
6
Graphically...
9
Inverses Additional Properties of Inverses The Existence of an Inverse Function (p. 39) A function has an inverse function if and only if it is one-to- one. Thus, graphically it will have to pass the horizontal line test.
10
Example 2
11
Finding the Inverse of a Function
12
Example 3
13
Inverse Trigonometric Functions
14
“Inverting” Trigonometric Functions
15
Formal Definitions
16
Inverse Trigonometric Properties
18
Example 4
19
Example 5
20
Example 6
21
Example 7
22
SECTION 1.6 Exponential & Logarithmic Functions
23
Example 1
24
Exponential & Logaritimic Fnc.’s
25
The Number e and the ln Function
26
Example 2
27
Example 3
28
Example 4
29
Logarithms Properties of (Natural) Logarithms
30
Logarithms (cont.) Properties of (Natural) Logarithms (cont.)
31
Example 5
32
Example 6
33
Example 7
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.