Download presentation
Presentation is loading. Please wait.
Published byGervais Horton Modified over 9 years ago
1
Calculation of the beam dynamics of RIKEN AVF Cyclotron E.E. Perepelkin JINR, Dubna 4 March 2008
2
General view of the AVF cyclotron Injection line ESD Dee Magnet sectors
3
Injection line LEBT
4
LEBT dimensions Initial emittance Superbunch ~ 4000°RF. 10,000 ions α x = α y = 0, β x = β y = 0.8 mm/mrad ε x = 115 π.mm.mrad, ε y = 98 π.mm.mrad Buncher Glazer lens G2 Glazer lens G1 Inflector
5
Buncher
6
Buncher parameters Buncher voltage V max is 150 Volt, (beam energy 52 keV, ECRIS potential is 10.4 kV) Gap = 5 mm
7
Buncher model 0.1 mm 2 mm
8
E z along OZ axis Ground electrode RF electrode Calculation was performed for the RF potential 1 volt
9
Z = -2.4 mm from buncher center
10
Z = -2 mm from buncher center
11
Z = 0 mm ( buncher center )
12
Z = 2 mm from buncher center
13
Z = 2.4 mm from buncher center
14
Glazer lens G1
15
G1 geometry Maximum excitation 42.9 kA· t
16
Model and mesh Symmetry 1/12 More than 4 million finite elements Maximum excitation 42.9 kA· t
17
B mod distribution at the XOZ plane
18
B mod on the OZ axis B c = 4.033 kGs
19
Glazer lens G2
20
G2 geometry Maximum excitation 26 kA· t
21
B mod distribution at the XOZ plane
22
B mod on the OZ axis B c = 2.506 kGs
23
Axial channel
24
Remarks Measured axial magnetic field, main coil current = 650A The current in the Glazer lens G1 and G2 was maximal JW(G1) = 42.9 kA t JW(G2) = 26 kA t Calculation of the magnetic field for the G1 and G2 was produced without taken into account the main coil field.
25
Field in the axial channel Glazer lens G1 Glazer lens G2
26
Inflector
27
Inflector parameters Particle 14 N 5+ with energy 52 keV Gap 8 mm Cutting 4 mm No tilt Electric radius A = 26 mm Magnetic radius ρ = 16.396 mm K = 0.8
28
Opera 3D model and mesh Cut 4 mm at the inflector entrance and exit Mesh step is about 1 mm
29
Inflector entrance
30
Inflector exit
31
Magnetic and electric maps area LEBT
32
Fields map area G2 Magnetic field G1 Magnetic field Buncher Electric field
33
Fields map area Inflector Electric field Axial channel Magnetic field G1 Magnetic field
34
Low beam intensity Test particle 14 N 5+ Space Charge effects are negligible
35
Parameters LEBT G1 lens: B c = 4.033 kG G2 lens: B c = 3.007 kG ( 20% up from nominal ) Injection energy = 45 keV ( 52 keV nominal ) Buncher voltage = 80 Volt ( 150 V nominal )
36
Buncher focusing animation
37
Lenses effect animation
38
Buncher losses Ground RF
39
Buncher losses Total buncher losses are 15 %
40
Monitoring planes Plane 1 Buncher entrance Plane 2 Exit buncher Plane 3 Begin G2 Plane 4 Exit G2 Plane 5 Begin G1 Plane 6 Exit G1 Plane 7 26 mm from the median plane
41
Plane 1
42
Plane 2
43
Plane 3
44
Plane 4
45
Plane 5
46
Plane 6
47
Plane 7
48
Nominal regime
49
Cross - check
50
Central trajectories Calculated E-map Analytical E-map
51
Parameters Radius, mm21.6 Θ - azimuth, deg53.34 Z C - axial position, mm0 Pr C, deg38.634 Pz C, deg0 Energy, keV50.9 Gaps φ RF, [deg] Analytical E-map φ RF, [deg] Calculated E-map 1-29-30 2-29 32030 4514 Starting parameters for central trajectory RF phase at the center of acceleration gaps 1 st turn U Dee = 46.7 kV, B-map – is measured, f RF = 16.3 MHz, Z=5, Mass = 14.
52
Inflector
53
Central trajectories
54
Compare trajectories ParametersTheoryCalculated Adjusted calculated * Radius, mm21.620.822.1 Θ - azimuth, deg14.716.513.7 Z C - axial position, mm0-0.040.54 Pr C, deg38.61943.78338.863 Pz C, deg0-8.98-0.93 Energy, keV5250.251.2 * Shift 0.8 mm, slope 4.5 deg
55
Emittance at the inflector entrance
56
Beam parameters Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad X 00.05199.5 Y 00.05199.5 Z 02.1 mm/keV1 keV/mm1 π mm ∙keV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad X 02.2043 Y 02.2043 Z 271.552 keV1 keV Twiss Statistics
57
Emittance at the inflector exit
58
Beam parameters Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad R 0.80.01195161 Z -1.20.02131336 φ RF -0.720 °RF/keV0.07 keV/°RF56 π °RF∙keV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad R 23.11.2617177 Z 0.32.5-7.5210 φ RF -33.6 °RF51.3 keV2 keV Twiss Statistics
59
Cyclotron
60
Bunches
61
Central region axial losses Losses 57%
62
Radial amplitude Symmetric B-map Real B-map
63
B-map harmonics R = 72 cm, Bm 2 = 15 Gs
64
Emittance for real B-map Center Dee 1 – position, final radius
65
Symmetric B-map Center Dee 1 – position, final radius
66
Flat - Top
67
Model features B-map – measurements E-map – analytical map Flat-top system Voltage radial dependencies
69
Central trajectory parameters φ RF, deg-65 Radius, mm23.3 Θ - azimuth, deg64.1 Z C - axial position, mm0 Pr C, deg38.74 Pz C, deg0 Energy, keV55.1 Operational frequency 16.222 MHz, harmonic = 2 U Dee = 50 kV m( 14 N 5+ ) = 14.067
70
Central trajectory
71
Radial amplitude
72
Phases and energy
73
Emittance at the inflector exit
74
Beam parameters Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad R 2.20274104 Z -0.50125320 φ RF -0.25.5 °RF/keV0.2 keV/°RF273 π °RF ∙keV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad R 23.41.538.75205 Z 01.80200.3 φ RF -65 °RF38.8 °RF55.1 keV7.2 keV Twiss Statistics
75
Flat-Top off/on
76
Axial motion (Flat-Top off/on)
77
Emittances (Flat-Top off) Dee 1 center – azimuth bunch position
78
Emittances (Flat-Top on) Dee 1 center – azimuth bunch position
79
Beam parameters (Flat-Top off) Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad R 00.51.9268 Z -0.920.942 φ RF -0.10 °RF/keV96 keV/°RF130 π °RF ∙MeV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad R 55211.8-14.622.7 Z 09.406 φ RF -36.8 °RF62.7 MeV3.5 MeV Twiss Statistics
80
Beam parameters (Flat-Top on) Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad R -1.30.92.763 Z 0.31.50.733.5 φ RF 0.10 °RF/keV43 keV/°RF31.6 π °RF ∙MeV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad R 5527.8-23.313 Z 0704.9 φ RF -27 °RF62.9 MeV1.17 MeV Twiss Statistics
81
Flat-Top effect
82
Extraction
83
Analytical ESD E=71 kV/cm
84
Comparison By Goto-san This calculation
85
Optimization
86
Main result Losses from the inflector ground to the ESD mouth is 35% instead of 60%. And this result can be improved.
87
Modification of buncher parameters Initial beam energy 45 keV (ECRIS potential 9 kV, instead of 10.4 kV) V max = 80 Volt (instead of 150 kV)
88
Modification inflector parameters Electrode potential ±3.14 kV or ±3.2 kV
89
Central trajectories Starting position (x,y,z) = (0,0,36) mm Injection - strongly axial direction Energy 45 keV ParametersTheoryCalculated Radius, mm21.06721.52 Θ - azimuth, deg53.152.4 Z C - axial position, mm02.3 Pr C, deg39.07442.3 Pz C, deg0 -0.45 Energy, keV5246.1 At the inflector exit
90
Cyclotron
91
B map modification First trim coil We added the magnetic field to the measurement B-map
92
Electric field parameters Dee voltage 40 kV instead of operational 46.7 kV RF frequency 16.219 MHz instead of operational 16.3 MHz No flat-top
93
RF phase at the Dee’s centre For the central trajectory
94
Emittance at the inflector entrance
95
Beam parameters Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad X 00.05199.5 Y 00.05199.5 Z 02.1 mm/keV1 keV/mm1.5 π mm ∙keV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad X 02.2043 Y 02.2043 Z 271.545 keV1 keV Twiss Statistics
96
Cyclotron animation
97
Central region losses 2.7% 4.4% 1.8% 7.6% Total axial 15.8% Total losses 34.7%
98
Axial motion
99
3D view
100
Emittance at the radius ~66 cm Center Dee 1 – position, not final radius
101
Beam parameters Parameters Coordinates αβ mm/mrad γ mrad/mm ε π∙mm∙mrad R 0.81.21.433 Z 0.31.90.614 φ RF 0.613.1 deg/MeV0.1 MeV/deg4.3 π mm ∙MeV Parameters Coordinates Average- position mm 2σ- deviation mm Average- angle mrad 2σ-angle mrad R 6595.634.66.3 Z 0.25.21.22.9 φ RF -7.588.12 MeV0.7 MeV Twiss Statistics
102
Future activities Decrease axial losses by the inflector axial shift on 2.3 mm Optimization of the inflector cutting Implementation of the beam centering procedure Assessment of the modified central electrode structure Extraction study for the completed deflector model Last but not the least: It would be advisable to performer an experimental checking of simulation results obtained so far.
Similar presentations
© 2024 SlidePlayer.com. Inc.
All rights reserved.