Download presentation
Published byQuentin Skinner Modified over 9 years ago
1
A Practical Introduction to Stellar Nonradial Oscillations
Rich Townsend University of Delaware ESO Chile ̶ November 2006 TexPoint fonts used in EMF. Read the TexPoint manual before you delete this box.: AAAA
2
Objectives What? Where? Why? How?
3
Overview Historical Perspective Waves in stars Global oscillations
Radial pulsators Nonradial pulsators Waves in stars Global oscillations Surface variations Rotation effects Driving mechanisms
4
Cephei John Goodricke (1784)
6
Cepheids in the HR Diagram
7
Henrietta Leavitt ( ) SMC Stars: Mv = log(P) - 1.4
8
Period-Luminosity Relation
9
Origin of the P-L Relation
Constant L evolution L / M3 Constant T instability L / R2 Dynamical timescale / R3/2 M-1/2 Combine: / L0.6 Compare: / L0.9
10
Extragalactic Distance Scale
11
Paul Ledoux (1914-1988) mechanism Secular instability Semiconvection
Nonradial pulsation
12
Canis Majoris Struve (1950): P1 = 0.25002 d P2 = 0.25130 d
13
Analogy: Hydrogen Spectrum
14
Nonradial Oscillations
15
Global Standing Waves Angular Radial
16
NRO’s in the HR Diagram
17
Types of Wave Acoustic (pressure) Gravity (buoyancy)
18
Linearized Hydrodynamics
’/t + r¢(v’) = 0 v’/t = -rp’ - g’ p’/ t + v’¢rp = a2(’/ t + v’¢r)
19
Wave Equation Eliminate ’ and p’:
2v’/t2 = a2r(r¢v’) + (a2r¢v’)rln 1 + (1 - 1)(r¢v’)g + r(g¢v’) 1 = (ln p/ln )s = a2/p
20
Waves in Isothermal Atmosphere
2v’/t2 = a2r(r¢v’) + ( - 1)(r¢v’)g + r(g¢v’) Trial solutions: v’ / exp[i(k¢r - t) + z/2H] E = ½ |v’|2 = ½ 0 exp[-z/H] v0’2 exp[z/H] = ½ 0 v0’2
21
Dispersion Relation 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0
Acoustic cutoff frequency : ac = /2 g/a Buoyancy frequency : N = (-1)1/2 g/a |k| kh kz
22
Limit: No Stratification (g!0)
4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = a |k| Acoustic waves
23
Limit: Vertical Propagation (kh!0)
4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = (a2 |k|2 + ac2)1/2 > ac Modified acoustic waves
24
Limit: Incompressible (a!1)
4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 = N kh/|k| = N sin < N |k| kh kz Gravity waves
25
Gravity Waves in a Liquid
26
kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2
Vertical Wavenumber 4 - [ac2 + a2 |k|2] 2 + N2 a2 kh2 = 0 kz2 = (2 - ac2)/a2 + (N2 - 2) kh2/2 |k| kh kz kz2 > 0 ! Propagating (wave) kz2 < 0 ! Evanescent (exponential)
27
Isothermal Diagnostic Diagram
Acoustic waves Gravity waves
28
WKBJ Diagnostic Diagram
Acoustic waves Gravity waves
29
Spherical Harmonics Sectoral Radial Tesseral Zonal kh2 = ℓ(ℓ+1)/r2
30
Propagation Diagram ̶ Polytrope
ℓ=2 modes
31
Wave Trapping ̶ Modes p modes f mode g modes ℓ=2 modes
32
Propagation Diagram ̶ 5 M¯
p modes f mode g modes
33
Mode Frequencies rb - ra = n /2 = n / kr Limit of large n : kr ¼ |k|
ra - rb ¼ R ! R ¼ n / |k|
34
p-mode Frequencies Trapping : R ¼ n / |k| Dispersion : ¼ a |k|
¼ n a/R = n [s a-1 dr]-1
35
Dispersion : ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R
g-mode Frequencies Trapping : R ¼ n / |k| Dispersion : ¼ N kh / |k| = [ℓ(ℓ+1)]1/2 / |k|R ¼ [ℓ(ℓ+1)]1/2/n N = [ℓ(ℓ+1)]1/2/n [s N/r dr]
36
Frequency Spectra Polytrope 5 M¯
37
p-mode Surface Variations
38
g-mode Surface Variations
39
p modes vs. g modes
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.