Download presentation
Presentation is loading. Please wait.
Published byCoral Dawson Modified over 9 years ago
3
Fixed mirror Movable mirror F M time t mirror position
4
FFT x n : optical path t m : time evolution of the process I : intensity of the interferogram x n : optical path t m : time evolution of the process I : intensity of the interferogram mirror position time t
5
10 ns / 0.07 cm 1 1 s / 0.3 cm 1 10 ns / 0.07 cm 1 1 s / 0.3 cm 1
6
Uhmann et al. Appl. Spectrosc. 45, 390 (1991)
7
cis trans J. Chem. Phys. 132, 114303 (2010).
8
Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995) Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995)
9
A1 SO 2 antisymmetric stretch obs. : 1280 cal. : 1262 A2 SO 2 symmetric stretch obs. : 1076 cal. : 1074 J. Chem. Phys. 124, 244301 (2006)
10
Photolysis at 248 nm of CH 3 SSCH 3 /O 2 ( 1/700, total 220 Torr ) at 260 K J. Chem. Phys. 133, 184303 (2010). CH 3 SO
11
A ( 1110 cm 1 ), B( 1397 cm 1 ) : syn-CH 3 SOO C ( 1071 cm 1 ): CH 3 SO E ( 1170 cm 1 ): CH 3 S(O)OSCH 3 F ( 1120 cm 1 ): CH 3 S(O)S(O)CH 3 CH 3 SOO + CH 3 SOO 2 CH 3 SO + O 2 H = 286 kJ mol 1 CH 3 SO + CH 3 SO CH 3 S(O)OSCH 3 H = 68 kJ mol 1 CH 3 SO + CH 3 SO CH 3 S(O)S(O)CH 3 H = 61 kJ mol 1 C: CH 3 SO A: CH 3 SOO CH 3 SOO + CH 3 S 2 CH 3 SO H = 334 kJ mol 1
12
J. Chem. Phys. 134, 094304 (2011)
14
CH 3 SO 2 CH 3 OSOCH 3 SOOCH 3 SO B3P86Expt.B3P86Expt.B3P86Expt.B3P86Expt. 12621280312929881425139710811071 107410763046295511971110 11661154 JCP, 124, 244301 (2006). 11621151 1028994JCP, 133, 184303 (2010) S=O stretch; O-O stretch; C-O stretch JCP 134, 094304 (2011)
15
Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995) Barone/Turnipseed/Ravishankara Faraday Discuss. 100, 39 (1995)
16
CH 3 S + NO 2 → CH 3 SO + NO (1) CH 3 S + NO 2 + M → CH 3 SNO 2 +M (2) CH 3 S + NO 2 → H 2 CS + HONO (3) CH 3 S + NO 2 + M → CH 3 SONO + M (4) ? (CH 3 SO) = 1.07 0.15 (PIMS, P T = 1 Torr) (NO) = 0.8 0.2 (LIF, P T = 300 Torr) Domine, Murrells, Howard, J. Phys. Chem. 94, 5839 (1990). Tyndall, Ravishankara, J. Phys. Chem. 93, 2426 (1989).
17
cis-CH 3 SONO (-132.9)(-122.5)(-154.2) (-108.7) (-93.6) Wang et al., Chinese Chem. Lett. 13, 805 (2002). QCISD(T) /6-311++G(d,p) Wang et al., Chinese Chem. Lett. 13, 805 (2002). QCISD(T) /6-311++G(d,p) S. K. Tang et al., Int. J. Quantum Chem. 107, 1495 (2007). G3(MP2) 17
18
P T = 16 to 141 Torr (N 2 /DMDS/NO 2 = 140/0.9/0.06) R = 4 cm -1 Laser trigger = 4 Hz, 10 shots average on each step CH 3 SSCH 3 + 248 nm → 2 CH 3 S DMDS) = 1.24 10 -18 cm 2 molecule -1 F (CH 3 S) = 1.65 0.38 NO 2 ) = 2.75 10 -20 cm 2 molecule -1 [NO 2 ]/[CH 3 S] = 1.9 10 15 /3.1 10 14 molecule cm -3 P(N 2 O 4 ) < 0.1 mTorr 18
19
A1A1 B A2A2 C SO 2 19 NO 2 DMDS P T = 16.2 Torr
20
P T = 140.8 Torr A1A1 B NO 2 DMDS 20
21
(a) 141 Torr (31-60 s) (b) 16.1 Torr (6-10 s) CH 3 SNO 2 cis-CH 3 SONO CH 3 SO CH 3 SNO (g) solid: calculation dash: experiment solid: calculation dash: experiment A1A1 B C A2A2 trans-HONO O H = 3591 cm -1 N=O = 1700 cm -1 NOH = 1263 cm -1 cis-HONO E = 1.7 kJ mole -1 O H = 3426 cm -1 N=O = 1641 cm -1 21
22
(a) CH 3 SNO 2 (b) cis-CH 3 SONO (c) Expt. vs. simulation A1A1 A2A2 4 = 1562 cm -1 8 = 1260 cm -1 4 = 1562 cm -1 P T = 16.2 Torr, 10-20 s 22
23
(a) Experiments 50-70 s 90-110 s subtraction (b) cis-CH 3 SONO (c) Expt. vs. cis-CH 3 SONO 4 = 1562 cm -1 P T = 140.8 Torr A1A1 23
24
Predicted IR intensity: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =42/294/331 Integrated intensity: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =0.52/0.50/0.33 Relative branching ratio: CH 3 SO/CH 3 SONO/CH 3 SNO 2 =1.00/0.14/0.08 P t (Torr)CH 3 SO + NOCH 3 SONOCH 3 SNO 2 Reference 300 0.8 0.2 --J. Phys. Chem. 93, 2426 (1989) 140.8- 1 1 -This work 16.20.820.110.07This work 4.20.870.080.05This work 1 1.07 0.15 --J. Phys. Chem. 94, 5839 (1990)
25
25 k /10 -11 cm 3 molecule -1 s -1 Temp. /K Reference 10.1 ± 1.5297a 6.28 ± 0.28298b 10.8 ± 1.0295c 5.1 ± 0.9297d 6.10 ± 0.90298e 5.3 ± 1.6298This work a Chang, Wang, Wang, Hwang, Lee, J. Phys. Chem. A 104, 5525 (2000). b A. A. Turnipseed, S. B. Barone, A. R. Ravishankara, J. Phys. Chem. 97, 5926 (1993). c R. J. Balla, H. H. Nelson, J. R. McDonald, Chem. Phys. 109, 101 (1986). d F. Domine, T. P. Murrells, C. J. Howard, J. Phys. Chem. 94, 5839 (1990). e G. S. Tyndall, A. R. Ravishankara, J. Phys. Chem. 93, 2426 (1989). 1578-1564 cm -1 (A 1 )
26
New products CH 3 SO, cis-CH 3 SONO and CH 3 SNO 2 are identified in the reaction of CH 3 S + NO 2. – CH 3 SO:1071 cm -1 – cis-CH 3 SONO: 1562 cm -1 – CH 3 SNO 2 : 1560, 1260 cm -1 The major products at high pressure (140.8 Torr) is cis- CH 3 SONO, whereas those at low pressure (4-16 Torr) is CH 3 SO; CH 3 SNO 2 is the minor product. A simple kinetics model was employed to yield a second-order rate coefficient for reaction CH 3 S + NO 2 as k = (5.3 1.6) 10 -11 cm 3 molecule -1 s -1, consistent with previous results. 26
27
Li-Kang Chu Jin-Dah Chen
28
Vibrational wavenumbers CH 3 SNO 2 a- =1562 cm -1 s- =1257 cm -1 gas phase CH 3 SO S O =1071 cm -1 L.-K. Chu and Y.-P. Lee, J. Chem. Phys. 133, 1 (2010). H. Niki, P. D. Maker, C. M. Savage, and L. P. Breltenbach, J. Phys. Chem. 87, 7 (1983). trans-HONO O H =3591 cm -1 N=O =1700 cm -1 NOH =1263 cm -1 cis-HONO E=1.7 kJ mole -1 O H =3426 cm -1 N=O =1641 cm -1 J. -M. Guilmot, M. Godefroid, and M. Herman, J. Mol. Sprctro. 160, 387 (1993). J. -M. Guilmot, F. M é len, and M. Herman, J. Mol. Sprctro. 160, 401 (1993). 28
29
Vibrational wavenumbers cis-CH 3 SONO N=O =1633 cm -1 (294) B3LYP/aug-cc-pVTZ perp,trans-CH 3 SONO perp,cis-CH 3 SONO N=O =1819 cm -1 (417) N=O =1815 cm -1 (305) E=0 E=1.8 kJ mol -1 E=5.7 kJ mol -1 29
30
cis-CH 3 SONO CH 3 SO A’/A”=0.9924 B’/B”=0.9990 C’/C”=0.9978 A’/A”=0.9950 B’/B”=1.0035 C’/C”=1.0022 30
31
CH 3 SNO 2 4 8 A’/A”=0.9972 B’/B”=0.9997 C’/C”=0.9992 A’/A”=0.9977 B’/B”=0.9995 C’/C”=0.9984 31
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.