Download presentation
Presentation is loading. Please wait.
Published byNancy Potter Modified over 9 years ago
1
ENERGY RECOVERY OF THE CMS ELECTROMAGNETIC CALORIMETER DEAD CHANNELS Daskalakis Georgios, Geralis Theodoros, Kesisoglou Stilianos, Manolakos Ioannis, Eleni Ntomari 1 XXIX Workshop on Recent Advances in Particle Physics and Cosmology
2
Introduction Description of the method Position Estimation Energy Estimation Conclusions-future plans Outline 5/11/2015 Eleni Ntomari - NCSR Demokritos2
3
5/11/2015 Eleni Ntomari - NCSR Demokritos3 CMS detector ECAL One of the most accurate, distinctive and important subdetectors of the CMS experiment Measurements of electrons and photons with an excellent energy resolution essential in the search for new physics, in particular for the postulated Higgs boson.
4
ECAL Endcap ECAL Barrel 61 200 lead tungstate (PbWO4 ) crystals mounted in the central barrel 7 324 crystals in each of the two endcaps 5/11/2015 Eleni Ntomari - NCSR Demokritos4
5
ECAL Endcap ECAL Barrel 5/11/2015 Eleni Ntomari - NCSR Demokritos5 The electromagnetic calorimeter is designed to perform precision measurements aiming to reach 0.5% energy resolution at high energy. 36 supermodules made of 85x20 crystals, each one divided into 4 modules. Each Endcap is divided into 2 halves and is logically organized in 9 sectors of 40 degrees each. A preshower detector is placed in front of the endcap crystals. identify neutral pions in the endcaps within a fiducial region 1.653 < |η| < 2.6. identification of electrons against minimum ionizing particles improves the position determination of electrons and photons with high granularity. Preshower based on Si sensors
6
Dead Channels-How important is it to develop a recovery algorithm? ~1% of the Electromagnetic Calorimeter Channels present problems (e.g. noisy channels, poor response) ->cannot be used for the energy estimation of the particles that "hit" near them. 5/11/2015 Eleni Ntomari - NCSR Demokritos6
7
Dead Channels-How important is it to develop a recovery algorithm? ~1% of the Electromagnetic Calorimeter Channels present problems (e.g. noisy channels, poor response) ->cannot be used for the energy estimation of the particles that "hit" near them. 5/11/2015 Eleni Ntomari - NCSR Demokritos7 Crystal 6 81318 7 12 17 61116
8
Dead Channels-How important is it to develop a recovery algorithm? ~1% of the Electromagnetic Calorimeter Channels present problems (e.g. noisy channels, poor response) ->cannot be used for the energy estimation of the particles that "hit" near them. 5/11/2015 Eleni Ntomari - NCSR Demokritos8 Crystal 7 81318 7 12 17 61116
9
Method description Effort to develop recovery algorithms, in order to be able to estimate the energy of these Dead Channels, using the energy of their neighboring functioning crystals 5/11/2015 Eleni Ntomari - NCSR Demokritos9 Build position reconstruction functions using energies from all crystals in a 5x5 or 3x3 grid, except from the missing one
10
Method description 5/11/2015 Eleni Ntomari - NCSR Demokritos10 Effort to develop recovery algorithms, in order to be able to estimate the energy of these Dead Channels, using the energy of their neighboring functioning crystals Build position reconstruction functions using energies from all crystals in a 5x5 or 3x3 grid, except from the missing one Build energy correction functions using Monte Carlo Energy fraction Dead Channel Energy
11
Method description 5/11/2015 Eleni Ntomari - NCSR Demokritos11 Effort to develop recovery algorithms, in order to be able to estimate the energy of these Dead Channels, using the energy of their neighboring functioning crystals Build position reconstruction functions using energies from all crystals in a 5x5 or 3x3 grid, except from the missing one Build energy correction functions using Monte Carlo Energy fraction Dead Channel Energy Apply functions in areas with dead channels Tests with 2010 Collision Data
12
Method description Build position reconstruction functions using energies from all crystals in a 5x5 or 3x3 grid, except from the missing one Build energy correction functions using Monte Carlo Energy fraction Dead Channel Energy Apply functions in areas with dead channels Tests with 2010 Collision Data Data Samples /EG/Run2010A-Sep17ReReco-v2/RECO /Electron/Run2010B-PromptReco-v2/RECO /EG/Run2010A-Nov4ReReco-v2/RECO /Electron/Run2010B-Nov4ReReco_v2/RECO 5/11/2015 Eleni Ntomari - NCSR Demokritos12 Effort to develop recovery algorithms, in order to be able to estimate the energy of these Dead Channels, using the energy of their neighboring functioning crystals
13
81318 7 12 17 61116 Estimate the true position of the hit (photon or electron) Photon: information of the supercluster Electron/Positron: information of the supercluster or the tracker Reconstruction of the event position: Scurve Method : Logarithmic weighted method: Event position reconstruction η φ 5/11/2015 Eleni Ntomari - NCSR Demokritos13
14
8 18 7 12 17 61116 Estimate the true position of the hit (photon or electron) Photon: information of the supercluster Electron/Positron: information of the supercluster or the tracker Reconstruction of the event position: Scurve Method : Logarithmic weighted method: Event position reconstruction Most energetic crystal η φ 5/11/2015 Eleni Ntomari - NCSR Demokritos14
15
81318 7 12 17 61116 Estimate the true position of the hit (photon or electron) Photon: information of the supercluster Electron/Positron: information of the supercluster or the tracker Reconstruction of the event position: Scurve Method : Logarithmic weighted method: Most energetic crystal Dead crystal η φ 5/11/2015 Eleni Ntomari - NCSR Demokritos15 Event position reconstruction
16
81318 7 12 17 61116 Estimate the true position of the hit (photon or electron) Photon: information of the supercluster Electron/Positron: information of the supercluster or the tracker Reconstruction of the event position: Scurve Method : Logarithmic weighted method: Most energetic crystal Dead crystal η φ EstimX [mm] TrueX-EstimX [mm] EstimY [mm] TrueY-EstimY[mm] 5/11/2015 Eleni Ntomari - NCSR Demokritos16 Event position reconstruction
17
Position Resolution - Crystal 6 81318 7 12 17 61116 11/04/11 Eleni Ntomari - NCSR Demokritos17 2010 Collision DATA
18
Position Resolution - Crystal 6 81318 7 12 17 61116 11/04/11 Eleni Ntomari - NCSR Demokritos18 2010 Collision DATA
19
Position Resolutions - X 5/11/2015 Eleni Ntomari - NCSR Demokritos19 2010 Collision DATA
20
Energy Correction functions (Monte Carlo e+/e-) 5/11/2015 Eleni Ntomari - NCSR Demokritos20 The most energetic crystal (12) is split in 25 subdivisions In most of the cases, the energy fraction follows a Gaussian distribution The Gauss fit mean value is used to extract the constants of the formula that calculates the corrected fraction: o f(η,φ): energy fraction (fr=Edc/Sum9) o n, φ: hit coordinates on the crystal o a ij : constants to be defined Fraction = f(η,φ) = Edc/sum9 → Edc = (fraction x sum8 )/(1 – fraction)
21
Energy Correction functions (Monte Carlo e+/e-) 49141924 38131823 27121722 16111621 05101520 5/11/2015 Eleni Ntomari - NCSR Demokritos21 The most energetic crystal (12) is split in 25 subdivisions In most of the cases, the energy fraction follows a Gaussian distribution The Gauss fit mean value is used to extract the constants of the formula that calculates the corrected fraction: o f(η,φ): energy fraction (fr=Edc/Sum9) o n, φ: hit coordinates on the crystal o a ij : constants to be defined Fraction = f(η,φ) = Edc/sum9 → Edc = (fraction x sum8 )/(1 – fraction)
22
Energy Correction functions (Monte Carlo e+/e-) 49141924 38131823 27121722 16111621 05101520 5/11/2015 Eleni Ntomari - NCSR Demokritos22 The most energetic crystal (12) is split in 25 subdivisions In most of the cases, the energy fraction follows a Gaussian distribution The Gauss fit mean value is used to extract the constants of the formula that calculates the corrected fraction: o f(η,φ): energy fraction (fr=Edc/Sum9) o n, φ: hit coordinates on the crystal o a ij : constants to be defined Fraction = f(η,φ) = Edc/sum9 → Edc = (fraction x sum8 )/(1 – fraction)
23
Energy Resolutions Sum8/Sum9 Sum8+Edc/Sum9 81318 7 12 17 61116 5/11/2015 Eleni Ntomari - NCSR Demokritos23 2010 Collision DATA
24
Energy Resolutions Sum8/Sum9 Sum8+Edc/Sum9 81318 7 12 17 61116 81318 7 12 17 61116 5/11/2015 Eleni Ntomari - NCSR Demokritos24 2010 Collision DATA
25
RD: Electrons (Scurve_RD_e+e-, Spline_MC_e+e-, η>0) 11/04/11 Eleni Ntomari - NCSR Demokritos25 2010 Collision DATA
26
RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta 30, fbrem<0.1) RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-, η>0) 11/04/11 Eleni Ntomari - NCSR Demokritos26 2010 Collision DATA
27
First analysis with Monte Carlo photons, electrons and positrons gives promising results Conclusions 11/04/11 Eleni Ntomari - NCSR Demokritos27
28
First analysis with Monte Carlo photons, electrons and positrons gives promising results Tests of this method on Real Data appears to be quite satisfactory for both electrons and positrons, as well as EB+ and EB- Conclusions 11/04/11 Eleni Ntomari - NCSR Demokritos28
29
First analysis with Monte Carlo photons, electrons and positrons gives promising results Tests of this method on Real Data appears to be quite satisfactory for both electrons and positrons, as well as EB+ and EB- The correction functions estimate correctly the impact position and the missing energy of the problematic channel Conclusions 11/04/11 Eleni Ntomari - NCSR Demokritos29
30
First analysis with Monte Carlo photons, electrons and positrons gives promising results Tests of this method on Real Data appears to be quite satisfactory for both electrons and positrons, as well as EB+ and EB- The correction functions estimate correctly the impact position and the missing energy of the problematic channel Studies will be extended in the ECAL endcaps Conclusions 11/04/11 Eleni Ntomari - NCSR Demokritos30
31
First analysis with Monte Carlo photons, electrons and positrons gives promising results Tests of this method on Real Data appears to be quite satisfactory for both electrons and positrons, as well as EB+ and EB-. The correction functions estimate correctly the impact position and the missing energy of the problematic channel. Studies will be extended in the ECAL endcaps With more data, it'll be possible to built the position corrections from data, without any usage of Monte Carlo Conclusions 11/04/11 Eleni Ntomari - NCSR Demokritos31
32
First analysis with Monte Carlo photons, electrons and positrons gives promising results Tests of this method on Real Data appears to be quite satisfactory for both electrons and positrons, as well as EB+ and EB-. The correction functions estimate correctly the impact position and the missing energy of the problematic channel. Studies will be extended in the ECAL endcaps With more data, it'll be possible to built the position corrections from data, without any usage of Monte Carlo The ultimate goal is to pass these corrections to CMS framework Conclusions 11/04/11 Eleni Ntomari - NCSR Demokritos32
33
Back up Slides 5/11/2015 33 Eleni Ntomari - NCSR Demokritos
34
5/11/2015Eleni Ntomari - NCSR Demokritos 34
35
Energy Resolutions 5/11/2015Eleni Ntomari - NCSR Demokritos 35 Real Data (W) Electrons Positrons Scurves from electrons-positrons Real Data Spline from MC electrons-positrons
36
5/11/2015Eleni Ntomari - NCSR Demokritos 36 RD: Electrons (Scurve_RD_e+e-, Spline_MC_e+e-)
37
5/11/2015Eleni Ntomari - NCSR Demokritos 37 RD: Electrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta>0)
38
5/11/2015Eleni Ntomari - NCSR Demokritos 38 RD: Electrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta<0)
39
RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-) 5/11/2015Eleni Ntomari - NCSR Demokritos 39
40
RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta 30, fbrem<0.1) 5/11/2015Eleni Ntomari - NCSR Demokritos 40 RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta>0)
41
RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta 30, fbrem<0.1) 5/11/2015Eleni Ntomari - NCSR Demokritos 41 RD: Positrons (Scurve_RD_e+e-, Spline_MC_e+e-, ceta<0)
42
Position Resolutions 5/11/2015Eleni Ntomari - NCSR Demokritos42 Real Data (W) Electrons Positrons Scurves from electrons-positrons Real Data Spline from MC electrons-positrons
43
Real Data- Electrons X-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta<0 5/11/2015Eleni Ntomari - NCSR Demokritos43
44
Real Data- Positrons X-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta<0 5/11/2015Eleni Ntomari - NCSR Demokritos44
45
Real Data- Electrons X-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta>0 5/11/2015Eleni Ntomari - NCSR Demokritos45
46
Real Data- Positrons X-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta>0 5/11/2015Eleni Ntomari - NCSR Demokritos46
47
Real Data- Electrons Y-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta<0 5/11/2015Eleni Ntomari - NCSR Demokritos47
48
Real Data- Positrons Y-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta<0 5/11/2015Eleni Ntomari - NCSR Demokritos48
49
Real Data- Electrons Y-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta>0 5/11/2015Eleni Ntomari - NCSR Demokritos49
50
Real Data- Positrons Y-Resolution, Scurve_RD_e+e-, Spline_MC_e+e-, ceta>0 5/11/2015Eleni Ntomari - NCSR Demokritos50
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.