Download presentation
Presentation is loading. Please wait.
Published byDinah Long Modified over 8 years ago
1
Kazuyuki Asada Ichiro Hasuo RIMS, Kyoto University PRESTO Research Promotion Program, Japan Science and Technology Agency CSCAT 2010 March 18, 2010
2
Computations categorification Components
3
Strong monad J→TK [Moggi 88] Comonad SJ→K [Uustalu, Vene 08] Distributive law SJ→TK Arrow A(J,K) [Hughes 00] ↩
4
An arrow A on C [Hughes 00] is a family of sets A(J, K) (J,K ∊ C) three families of functions arr : Set(J, K) → A(J, K) >>> : A(J, K)×A(K, L) → A(J, L) first : A(J, K) → A(J×L, K×L) satisfying certain axioms, e.g. (a>>>b) >>>c = a >>>(b >>>c)
5
An arrow A on C [Hughes 00] is a family of sets A(J, K) ∍ three families of functions (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. = a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first
6
For a (strong) monad T on C, we have a Kleisli arrow A T on C: A T (J, K) := C T (J, K) = C(J, TK) arr: C(J, K) → C(J, TK) (Kleisli embedding) comp: C(J, TK)×C(K, TL) → C(J, TL) (Kleisli composition) first: C(J, TK) → C(J×L, T(K×L)) f (f×L) ; str
7
Computations categorification Components
8
(from wikipedia)
9
C JK arr f JK c JK d KL c JK d L c JK c JK LL F: J→K : a component : Pure function : Sequential composition : Sideline c JK LL c JK : Feedback Arrow!?
10
= An arrow A on C [Hughes 00] is a family of sets A(J, K) ∍ three families of functions (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first
11
T: a monad on Set (e.g. T = P fin finite powerset) c JK = T(X×K) J c↑ X in Set J: set of input K: set of output X: set of state Coalg ( T(-×K) J ) ∊
12
c JK d KL c JK d L >>> =, ==== T(X×K) J a↑ X T(Y×L) K b↑ Y T((X×Y)×L) J ↑ X×Y a>>>b state spaces: (X×Y) ×Z ≅ X× (Y×Z) ≅ c JK d L e M d KL e M c J
13
An arrow A on C is a family of sets A(J, K) ∍ three families of functions (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first =
14
≅ An categorical arrow A on C is a family of sets A(J, K) ∍ three families of functions (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first
15
≅ An categorical arrow A on C is a family of categories A(J, K) ∍ three families of functions (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first Coalg ( T(-×K) J )
16
≅ An categorical arrow A on C is a family of categories A(J, K) ∍ three families of functors (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first Coalg ( T(-×K) J )
17
≅ An categorical arrow A on C is a family of categories A(J, K) ∍ three families of functors (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first
18
When A(J, K) ( = { c } ) := Coalg ( T(-×K) J ) JK T(X×K) J c↑ X T(Z×K) J ↑final Z - - - - > > behavior
19
Computations categorification ArrowCategorical Arrow Components
20
Computations categorification ArrowCategorical Arrow Components
21
Computations categorification ArrowCategorical Arrow Components
22
Computations categorification ArrowCategorical Arrows Components Arrows concrete construction
23
Main technical result: For given arrow A on Set, we construct an arrow-based coalgebraic model: ∊ Coalg ( A(J, -×K) ), we show that these Coalg ( A(J, -×K) ) (J,K ∊ Set) form a categorical arrow. A(J, X×K) c↑ X ≅ c JK d L e M d KL e M c J
24
arrow A categ. arrow Coalg ( A(J, -×K) ) monad T categ. arrow Coalg ( T(-×K) J ) [Barbosa]+[Hasuo, H., J., S. 09] a proof technique of calculation in Prof (the bicategory of profunctors), using the fact: Arrow is strong monad in Prof. () generalization
25
What is Prof ?
26
A profunctor F: C ―|―> D (C, D: categories) is a functor F: D op ×C → Set Y, X F(Y, X).
27
A profunctor F: C ――> D (C, D: categories) is a functor F: D op ×C → Set Y, X F(Y, X). p = For g: Y’ → Y in D, f: X → X’ in C, F(g, f) (p) = p YX ∊ Y p X g f Y’X’
28
Composition G 。 F: C ――> E is E op ×C → Set Z, X Σ Y { (, ) } / ~ (sets of “formal composition”) p YX p YX q ZY A profunctor F: C ――> D is a functor F: D op ×C → Set Y, X F(Y, X) = { }
29
σ Prof is a bicategory whose 0-cells are small categories, 1-cells are profunctors, and 2-cells are natural transformations. ( C D := D op ×C Set ) ⇒ σ ⇒
30
Why Prof ?
31
F α X Cα ⇓ D vs. FX GX G
32
MonadArrow(w/o first) T: C → C η X : X→TX μ X : TTX→TX TTT ――> TT ↓ ↓ TT ――> T … equipped with satisfying A:C op ×C→Set arr: C(J,K)→A(J,K) >>>: A(J,K) × A(K,L) → A(J,L) (a >>> b) >>> c = a >>> (b >>> c) …
33
MonadArrow(w/o first) T: C C C C C C C C C C C = C C C C … equipped with satisfying A:C op ×C→Set arr: C(J,K)→A(J,K) >>>: A(J,K) × A(K,L) → A(J,L) (a >>> b) >>> c = a >>> (b >>> c) … η ⇒ μ ⇒ μ ⇒ μ ⇒ μ ⇒ μ ⇒ in Cat
34
MonadArrow(w/o first) T: C C C C C C C C C C C = C C C C … equipped with satisfying A: C C C C C C C C C C C = C C C C … η ⇒ μ ⇒ μ ⇒ μ ⇒ μ ⇒ μ ⇒ arr ⇒ ⇒ ⇒ ⇒ ⇒⇒ >>> [Jacobs, H., H. 09] in Catin Prof
35
MonadArrow equipped with satisfying first: A(J,K) → A(J×L, K×L ) …
36
MonadArrow C×C C×C C C … equipped with Satisfying C×C C×C C C … A×C ×× A ⇒ first T×C ×× T ⇒ str [Asada 10] in Catin Prof
37
Arrow is equivalent to strong monad in Prof: i.e., C C satisfying familiar axioms. A×C ×× ⇒ first A C×C C×C C C arr ⇒ C ⇒ >>> C A A A AA in Prof
38
Theorem For an arrow A, the categories Coalg ( A(J, -×K) ) (J,K ∊ Set) forms a categorical arrow.
39
≅ An categorical arrow A on C is a family of categories A (J, K) ∍ three families of functors (Embedding a pure function f:J →K) (Sequential composition), (Sideline) satisfying certain axioms, e.g. a JK arr f JK a JK b KL a JK b L a JK a JK LL >>> a JK b L c M b KL c M a J first Coalg ( A(J, -×K) )
40
Proof. Lemma For an arrow A, the endofunctors A ( J, -×K ) (J,K ∊ Set) forms a lax arrow functor. Lemma [Hasuo, H., J., S. 09] If (F J,K ) J,K is a lax arrow endofunctor, Then Coalg ( F J,K ) (J,K ∊ Set) forms a categorical arrow.
41
Proof. Lemma For an arrow A, the endofunctors A ( J, -×K ) (J,K ∊ Set) forms a lax arrow functor. Lem [Hasuo, J., H., S. 09] If (F J,K ) J,K is a lax arrow endofunctor, Then Coalg ( F J,K ) (J,K ∊ Set) forms a categorical arrow.
42
(F J,K : Set→Set) J,K is a lax arrow functor if it is equipped with F arr f : 1 → F J,K (1) F >>> J,K,L : F J,K (X)×F K,L (Y) → F J,L (X×Y) F first J,K,L : F J,K (X) → F J × L, K × L (X) satisfying certain axioms (similar to arrow’s). cf. F 1 : 1 → F1 F × : FX×FY → F(X×Y)
43
LemmaFor an arrow A, there are the following structures: F arr f : 1 → A(J, 1×K) F >>> J,K,L : A(J, X×K)× A(K, Y×L) → A(J, (X×Y)×L) F first J,K,L : F J,K (X) → F J × L, K × L (X) satisfying certain axioms (similar to arrow’s).
44
E.g. A(J, X×K)× A(K, Y×L) → A(J, (X×Y)×L) can be described in Prof as F >>> J,K,L C3C2C2C2CCCC3C2C2C2CCC := C3C2C2C2CCCC3C2C2C2CCC × A F >>> ⇒⇒⇒ ⇒ >>> ≅ second C×A A A C× (×) (×)× C × × × C×A A C× (×) (×)× C ×
45
C3C2C2C2CCCC3C2C2C2CCC := C3C2C2C2CCCC3C2C2C2CCC × A F >>> ⇒⇒⇒ ⇒ >>> ≅ second C×A A A C× (×) (×)× C × × × C×A A C× (×) (×)× C × C4C3C3C3C3C2C2C2C2CCCC4C3C3C3C3C2C2C2C2CCC ⇒ ≅ C4C3C3C2C2C3C2C2CCCC2CC4C3C3C2C2C3C2C2CCCC2C F >>> ⇒ ⇒ C× F >>> ⇒ F >>> ⇒ C× (×) C 2 × (×) (×)× C 2 C×AC 2 ×AC× (×) (×)× C × C×A × A × (×)× C A A (×)× C 2 (×)× C × A A × C×A C× (×) C 2 ×AC 2 × (×) C×A C× (×) (×)× C C ×(×)× C =
46
Computations categorification ArrowCategorical Arrow(s) Components Arrows concrete construction
47
Key lemma Microcosm principles Main theorem [Hasuo, H., J., S. 09]
48
Key lemma Microcosm principles Outer model (main theorem) Inner model compositionality [Hasuo, H., J., S. 09]
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.