Download presentation
Presentation is loading. Please wait.
Published byPaulina Fisher Modified over 9 years ago
1
Measurement of the Atmospheric Muon Neutrino Energy Spectrum with IceCube in the 79- and 86-String Configuration Tim Ruhe, Mathis Börner, Florian Scheriau, Martin Schmitz, TU Dortmund Flux Energy
2
2 Outline IceCube and atmospheric neutrinos Event Selection Spectrum Unfolding Results Summary and Outlook
3
3 IceCube and atmospheric neutrinos Tim Ruhe | Statistische Methoden der Datenanalyse
4
4 Data Preprocessing Cut on zenith angle > 86° Redcution of the data volume, BUT remaining background is significantly harder to reject Additional cuts: Lepton velocity Empty Hits Truncated Energy (estimator) Track length
5
5 Feature Selection Stability Jaccard: Average over many sets of variables: Number of Variables Jaccard Index
6
6 Training and Validation of a Random Forest use an ensemble of simple decision trees Obtain final classification as an average over all trees
7
7 Random Forest Output 200 trees 5 Random Features per node 120,000 signal events 30,000 background events Forest Settings:
8
8 Random Forest Output (IC79) Find a trade-off between background rejection and signal efficiency Place a cut at confidence >=0.92 212 neutrino candidates per day 66885 neutrino candidates in total 330±200 background muons
9
9 Random Forest Output (IC86) 2-dimensional cut 289 neutrino candidates per day 92060 neutrino candidates in total 410±220 background muons
10
10 Why unfold? Muon production governed by stochastical processes Energy losses on the way towards the detector Finite resolution Limited acceptance of the detector Inverse Problem, to be solved with TRUEE.
11
11 Unfolding Input (1): Energy Correlation Input variables show good correlation with energy
12
12 Unfolding Input (2): Background Distributions for IC79 Tim Ruhe | Statistische Methoden der Datenanalyse Background events are located at lower energies Therefore, they do not affect the highest energy bins
13
13 Unfolding Input (3): Background Distributions for IC86 Background events are located at lower energies Therefore, they do not affect the highest energy bins
14
14 Unfolding Input (3): Background Distributions for IC86
15
15 Unfolding the spectrum TRUEE 3 energy dependent input variables TRUEE Clear deviation from an atmospheric only prediction
16
16 More results Combining the spectra Unfolding different zenith bands
17
17 Summary and Outlook Random Forest & MRMR TRUEE
18
18 Backup Tim Ruhe | Statistische Methoden der Datenanalyse
19
19 IC86 Precuts Tim Ruhe | Statistische Methoden der Datenanalyse
20
20 IC79 Precuts Tim Ruhe | Statistische Methoden der Datenanalyse
21
21 Comparison to other measurements Tim Ruhe | Statistische Methoden der Datenanalyse
22
22 Relevance vs. Redundancy: MRMR (continuous case) Relevance: Redundancy: MRMR: or
23
23 IC86 Confidence Distributions Tim Ruhe | Statistische Methoden der Datenanalyse
24
24 Unfolding Input for IC86 Tim Ruhe | Statistische Methoden der Datenanalyse
25
25 IC86 2D Cut Tim Ruhe | Statistische Methoden der Datenanalyse
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.