Download presentation
Presentation is loading. Please wait.
Published byOpal Georgia Harvey Modified over 9 years ago
1
Triangle Centres
2
Mental Health Break
3
Given the following triangle, find the: centroid orthocenter circumcenter
4
Equation of AD (median) Strategy…. 1.Find midpoint D 2.Find eq’n of AD by -Find slope “m” of AD using A & D -Plug “m” & point A or D into y=mx+b & solve for “b” -Now write eq’n using “m” & “b” Remember – the centroid is useful as the centre of the mass of a triangle – you can balance a triangle on a centroid!
5
Equation of AD (median)
6
Equation of BE (median) Strategy…. 1.Find midpoint E 2.Find eq’n of BE by -Find slope “m” of BE using B & E -Plug “m” & point B or E into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
7
Equation of BE (median)
8
Question? Do we have to find the equation of median CF also?
9
No We only need the equations of 2 medians… So, what do we do now?
10
We need to find the Point of Intersection for medians AD & BE using either substitution or elimination
11
Equation of median AD Equation of median BE
12
Equation of AD (median) Strategy…. 1.Find midpoint D 2.Find eq’n of AD by -Find slope “m” of AD using A & D -Plug “m” & point A or D into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
13
Centroid Eq’n AD – Midpoint of BC
14
Centroid Eq’n AD – Slope of AD
15
Centroid Eq’n AD – Finding “b”
16
Centroid Eq’n AD – Equation
17
Centroid Eq’n BE – Midpoint of AC
18
Centroid Eq’n BE – Slope of BE
19
Centroid Eq’n BE – Finding “b”
20
Centroid Eq’n BE – Equation
21
Centroid – Intersection of Eq’n AD & BE
22
BE AD Add AD and BE Simplify and solve for y
23
Centroid – Intersection of Eq’n AD & BE Substitute y = 1 into one of the equations Therefore, the point of intersection is (1,1)
24
Equation of altitude AD Strategy…. 1.Find “m” of BC 2.Take –ve reciprocal of “m” of BC to get “m” of AD 3.Find eq’n of AD by -Plug “m” from 2. & point A into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
25
Centroid – Intersection of Eq’n AD & BE Therefore, the Centroid is (1,1)
26
Equation of altitude AD
27
Equation of altitude BE Strategy…. 1.Find “m” of AC 2.Take –ve reciprocal of “m” of AC to get “m” of BE 3.Find eq’n of BE by -Plug “m” from 2. & point B into y=mx+b & solve for “b” -Now write eq’n using “m” & “b”
28
Equation of altitude BE
29
Question? Do we have to find the equation of altitude CF also?
30
No We only need the equations of 2 altitudes… So, what do we do now?
31
We need to find the Point of Intersection for altitudes AD & BE using either substitution or elimination
32
Equation of altitude AD Equation of altitude BE
33
Orthocentre Eq’n AD – Slope of BC then Slope of AD
34
Orthocentre Eq’n AD – Finding “b”
35
Orthocentre Eq’n AD – Equation
36
Orthocentre Eq’n BE – Slope of AC then Slope of BE
37
Orthocentre Eq’n BE – Finding “b”
38
Orthocentre Eq’n BE – Equation
39
Orthocentre – Intersection of Eq’n AD & BE
40
BE AD Add AD and BE Simplify and solve for y
41
Orthocentre – Intersection of Eq’n AD & BE Substitute y = 1 into one of the equations Therefore, the point of intersection or Orthocentre
42
Equation of ED (perpendicular bisector) Strategy… (use A (-1, 4), B (-1, -2) & C(5, 1)) 1.Find midpoint D 2.Find eq’n of ED by -Find slope “m” of BC using B & E -Take –ve reciprocal to get “m” of ED -Plug “m” ED & point D into y = mx+b & solve for b -Now write eq’n using “m” & “b”
43
Equation of ED (perpendicular bisector)
44
Equation of FG (perpendicular bisector) Strategy… (use A (-1, 4), B (-1, -2) & C(5, 1)) 1.Find midpoint F 2.Find eq’n of ED by -Find slope “m” of AC using A & C -Take –ve reciprocal to get “m” of FG -Plug “m” FG & point F into y = mx+b & solve for b -Now write eq’n using “m” & “b”
45
Question? Do we have to find the equation of perpendicular bisector HI?
46
No We only need the equations of 2 perpendicular bisectors… So, what do we do now?
47
We need to find the Point of Intersection for perpendicular bisectors ED & FG using either substitution or elimination
48
Equation of perpendicular bisector ED Equation of perpendicular bisector FG
49
Equation of FG (perpendicular bisector)
50
Circumcentre eq’n ED – Midpoint of BC
51
Circumcentre Eq’n ED – Slope of BC & Slope of ED
52
Circumcentre Eq’n ED – Finding “b”
53
Circumcentre Eq’n ED – Equation
54
Circumcentre Eq’n FG – Midpoint of AC
55
Circumcentre Eq’n FG – Slope of AC & Slope of FG
56
Circumcentre Eq’n FG – Finding “b”
57
Circumcentre Eq’n FG – Equation
58
Circumcentre – Intersection of Eq’n ED & FG
59
FG ED Add ED and FG Simplify and solve for y
60
Orthocentre – Intersection of Eq’n AD & BE Substitute y = 1 into one of the equations Therefore, the point of intersection or Circumcentre
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.