Download presentation
Presentation is loading. Please wait.
Published byMervin Day Modified over 8 years ago
1
Happy Birthday Les !
2
Valiant’s Permanent gift to TCS Avi Wigderson Institute for Advanced Study to TCS
3
-my postdoc problems! [Valiant ’82] “Parallel computation”, Proc. Of 7 th IBM symposium on mathematical foundations of computer science. Are the following “inherently sequential”? -Finding maximal independent set? [Karp-Wigderson] No! NC algorithm. -Finding a perfect matching? [Karp-Upfal-Wigderson] No! RNC algorithm OPEN: Det NC alg for perfect matching. Valiant’s gift to me
4
The Permanent X = Per n (X) = Sn i [n] X i (i) X 11,X 12,…, X 1n X 21,X 22,…, X 2n … … … … X n1,X n2,…, X nn [Valiant ’79] “The complexity of computing the permanent” [Valiant ‘79] “The complexity of enumeration and reliability problems” to TCS
5
Valiant brought the Permanent, polynomials and Algebra into the focus of TCS research. Plan of the talk As many results and questions as I can squeeze in ½ an hour about the Permanent and friends: Determinant, Perfect matching, counting
6
Monotone formulae for Majority [Valiant]: σ random! Pr[ F σ ≠ Maj k ] < exp(-k) OPEN: Explicit? [AKS], Determine m (k 2 <m<k 5.3 ) M X1X1 X2X2 X3X3 XkXk Y1Y1 Y2Y2 Y3Y3 YmYm V V V V V V V F 10 m=k 10 σ X7X7 1X7X7 X1X1 V V V V V V V F 1X2X2 X1X1 0
7
Counting classes: PP, #P, P #P, … C = C(Z 1,Z 2,…,Z n ) is a small circuit/formula, k=2 n, M X1X1 X2X2 X3X3 XkXk + X1X1 X2X2 X3X3 XkXk C(00…0) C(00…1) … … C(11…1) [Gill] PP [Valiant] #P C(00…0) C(00…1) … … C(11…1)
8
The richness of #P-complete problems V + C(00…0) C(00…1) … … C(11…1) NP #P C(00…0) C(00…1) … … C(11…1) SAT CLIQUE #SAT #CLIQUE Permanent #2-SAT Network Reliability Monomer-Dimer Ising, Potts, Tutte Enumeration, Algebra, Probability, Stat. Physics
9
The power of counting: Toda’s Theorem PH P NP PSPACE P #P [Valiant-Vazirani] Poly-time reduction: C D OPEN: Deterministic Valiant-Vazirani? V C(00…0) C(00…1) … … C(11…1) NP + P D(00…0) C(00…1) … … C(11…1) + PROBABILISTIC
10
Nice properties of Permanent Per is downwards self-reducible Per n (X) = Sn i [n] X i (i) Per n (X) = i [n] Per n-1 (X 1i ) Per is random self-reducible [Beaver-Feigenbaum, Lipton] F nxn C errs x+3yx+3y x+2yx+2y x x+y C errs on 1/(8n) Interpolate Per n (X) from C(X+iY) with Y random, i=1,2,…,n+1
11
Hardness amplification If the Permanent can be efficiently computed for most inputs, then it can for all inputs ! If the Permanent is hard in the worst-case, then it is also hard on average Worst-case Average case reduction Works for any low degree polynomial. Arithmetization: Boolean functions polynomials
12
Avalanche of consequences to probabilistic proof systems Using both RSR and DSR of Permanent! [Nisan] Per 2IP [Lund-Fortnow-Karloff-Nisan] Per IP [Shamir] IP = PSPACE [Babai-Fortnow-Lund] 2IP = NEXP [Arora-Safra, Arora-Lund-Motwani-Sudan-Szegedy] PCP = NP
13
Which classes have complete RSR problems? EXP PSPACE Low degree extensions #P Permenent PH NP No Black-Box reductions P [Fortnow-Feigenbaum,Bogdanov-Trevisan] NC 2 Determinant L NC 1 [Barrington] OPEN: Non Black-Box reductions? ?
14
On what fraction of inputs can we compute Permanent? Assume: a PPT algorithm A computer Per n for on fraction α of all matrices in M n (F p ). α = 1 #P = BPP α = 1-1/n #P = BPP [Lipton] α = 1/n c #P = BPP [CaiPavanSivakumar] α = n 3 /√p #P = PH =AM [FeigeLund] α = 1/p possible! OPEN: Tighten the bounds! (Improve Reed-Solomon list decoding [Sudan,…])
15
Hardness vs. Randomness [Babai-Fortnaow-Nisan-Wigderson] EXP P/poly BPP SUBEXP [Impagliazzo-Wigderson] EXP ≠ BPP BPP SUBEXP [Kabanets-Impagliazzo] Permanent is easy iff Identity Testing can be derandomized Proof: EXP P/poly We’re done EXP P/poly Per is EXP-complete [Karp-Lipton,Toda] …work…RSR…DSR…work…
16
[Vinodchandran]: PP SIZE(n 10 ) [Aaronson]: This result doesn’t relativize [Santhanam]: MA /1 SIZE(n 10 ) OPEN: Prove NP SIZE(n 10 ) [Aaronson-Wigderson] requires non-algebrizing proofs Vinodchandran’s Proof: PP P/poly We’re done PP P/poly P #P = MA [LFKN] P #P = PP 2 P PP [Toda] PP SIZE(n 10 ) [Kannan] Non-Relativizing Non-Natural Non-relativizing & Non-natural circuit lower bounds
17
PMP(G) – Perfect Matching polynomial of G [ShamirSnir,TiwariTompa]: msize(PMP(K n,n )) > exp(n) [FisherKasteleynTemperly]:size(PMP(Grid n,n )) = poly(n) [Valiant]: msize(PMP(Grid n,n )) > exp(n) The power of negation Arithmetic circuits Boolean circuits PM – Perfect Matching function [Edmonds]: size(PM) = poly(n) [Razborov]: msize(PM) > n logn OPEN: tight? [RazWigderson]: mFsize(PM) > exp(n)
18
X M k (F) Det k (X) = Sk sgn( ) i [k] X i (i) [Kirchoff]: counting spanning trees in n-graphs ≤ Det n [FisherKasteleynTemperly]: counting perfect matchings in planar n-graphs ≤ Det n [Valiant, Cai-Lu] Holographic algorithms … [Valiant]: evaluating size n formulae ≤ Det n [Hyafill, ValiantSkyumBerkowitzRackoff]: evaluating size n degree d arithmetic circuits ≤ Det OPEN: Improve to Det poly(n,d) The power of Determinant (and linear algebra) n logd
19
Algebraic analog of “P NP” F field, char(F) 2. X M k (F) Det k (X) = Sk sgn( ) i [k] X i (i) Y M n (F) Per n (Y) = Sn i [n] Y i (i) Affine map L: M n (F) M k (F) is good if Per n = Det k L k(n): the smallest k for which there is a good map? [Polya] k(2) =2 Per 2 = Det 2 [Valiant] F k(n) < exp(n) [Mignon-Ressayre] F k(n) > n 2 [Valiant] k(n) poly(n) “P NP” [Mulmuley-Sohoni] Algebraic-geometric approach a b -c d a b c d
20
Det n vs. Per n [Nisan] Both require noncommutative arithmetic branching programs of size 2 n [Raz] Both require multilinear arithmetic formulae of size n logn [Pauli,Troyansky-Tishby] Both equally computable by nature- quantum state of n identical particles: bosons Per n, fermions Det n [Ryser] Per n has depth-3 circuits of size n 2 2 n OPEN: Improve n! for Det n
21
Approximating Per n A: n×n 0/1 matrix. B: B ij ± A ij at random [Godsil-Gutman] Per n (A) = E[Det n (B) 2 ] [KarmarkarKarpLiptonLovaszLuby] variance = 2 n … B: B ij A ij R ij with random R ij, E[R]=0, E[R 2 ]=1 Use R={ ω,ω 2,ω 3 = 1}. variance ≤ 2 n/2 [Chien-Rasmussen-Sinclair] R non commutative! Use R={C 1,C 2,..C n } elements of Clifford algebra. variance ≤ poly(n) Approx scheme? OPEN: Compute Det(B)
22
Approx Per n deterministically A: n×n non-negative real matrix. [Linial-Samorodnitsky-Wigderson] Deterministic e -n -factor approximation. Two ingredients: (1) [Falikman,Egorichev] If B Doubly Stochastic then e -n ≈ n!/n n ≤ Per(B) ≤ 1 (the lower bound solved van der Varden’s conj) (2) Strongly polynomial algorithm for the following reduction to DS matrices: Matrix scaling: Find diagonal X,Y s.t. XAY is DS OPEN: Find a deterministic subexp approx.
23
Many happy returns, Les !!!
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.