Presentation is loading. Please wait.

Presentation is loading. Please wait.

1. Structures vs. reasons (planets,…) 2. Dust, avalanches, f IR, gas, and the classification of disks 3. HD 141569A as an example 4. Non-axisymmetric features.

Similar presentations


Presentation on theme: "1. Structures vs. reasons (planets,…) 2. Dust, avalanches, f IR, gas, and the classification of disks 3. HD 141569A as an example 4. Non-axisymmetric features."— Presentation transcript:

1 1. Structures vs. reasons (planets,…) 2. Dust, avalanches, f IR, gas, and the classification of disks 3. HD 141569A as an example 4. Non-axisymmetric features without planets Pawel Artymowicz University of Toronto, UTSC and St. George AST 1501 presentation 1 Nov 2005

2 New edge- on disk NICMOS/ HST (Schneider et al 2005)

3

4 Optical thickness  Dust density Radius r [AU]Height z [AU] STIS/Hubble imaging (Heap et al 2000) Modeling (Artymowicz,unpubl.): parametric, axisymmetric disk cometary dust phase function Possible mini-projects like this!

5 The danger of overinterpretation of structure Are the PLANETS responsible for EVERYTHING we see? Are they in EVERY system? Or are they like the Ptolemy’s epicycles, added each time we need to explain a new observation? Also, do we really need a new type of particle for every bandpass [optical, sub-mm]?

6 FEATURES in disks: (9) blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: (10) ■ instrumental artifacts, variable PSF, noise, deconvolution etc. ■ background/foreground obj. ■ planets (gravity) ■ stellar companions, flybys ■ dust migration in gas ■ dust blowout, avalanches ■ episodic release of dust ■ ISM (interstellar wind) ■ stellar UV, wind, magnetism ■ collective eff. (selfgravity radiative instab.) (Most features additionally depend on the viewing angle)

7 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps, incl. disks ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ instrumental artifacts, variable PSF, noise, deconvolution etc.

8 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ background or foreground objects

9 AB Aur : disk or no disk? Fukugawa et al. (2004) another “Pleiades”-type star no disk

10 Source: P. Kalas ?

11 AU Microscopii & a less inclined cousin This is a coincidentally(!) aligned background galaxy

12 .

13 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ planets (gravity)

14 Some models of structure in dusty disks rely on too limited a physics: ideally one needs to follow: full spatial distribution, velocity distribution, and size distribution of a collisional system subject to various external forces like radiation and gas drag -- that’s very tough to do! Resultant planet depends on all this. Beta = 0.01 (monodisp.)

15 Dangers of fitting planets to individual frames/observations: Vega has 0, 1, or 2 blobs, depending on bandpass. What about its planets? Are they wavelength-dependent too?

16 HD 141569A is a Herbig emission star >2 x solar mass, >10 x solar luminosity, Emission lines of H are double, because they come from a rotating inner gas disk. CO gas has also been found at r = 90 AU. Observations by Hubble Space Telescope (NICMOS near-IR camera). Age ~ 5 Myr, a transitional disk Gap-opening PLANET ? So far out?? R_gap ~350AU dR ~ 0.1 R_gap

17 Hubble Space Telescope/ NICMOS infrared camera

18 HD 14169A disk gap confirmed by new observations (HST/ACS)

19 HD141569+BC in V bandHD141569A deprojected HST/ACS Clampin et al.

20 Why & how do birds migrate? To cope with changing seasons, most birds migrate, few hibernate. In high arctic regions (northern Alaska, northern Canada, and Greenland), the entire population of birds often consists of migratory birds (they stay for summer only). In the forest and open country of United States, over 80% of the nesting land birds are migratory. However, on the Pacific Coast, more species are non-migratory; in tropical regions at least 80% of the birds are non-migratory. In the Rockies and Sierras of the West, migration often consists of moving from the high to low elevations. Rosy Finches, Townsend's Solitaires, and Mountain Quail perform these movements quite regularly whereas others, such as Clark's Nutcracker, are much more erratic. The annual fall migration of the Townsend's Solitaire may consist merely of descending a few thousand feet from a high mountain forest to the shelter of a wooded valley. Some migration schedules do not always closely follow seasonal changes in the weather. For example, since the vegetative food supply of nomadic species such as the crossbills, redpolls, and Pine Grosbeaks fluctuates in abundance from year to year, these birds migrate in some winters and not in others. In contrast, insect-eating birds such as warblers, vireos, and flycatchers that live in the far north have no choice but to migrate. Their migration therefore tends to involve long distances a nd regular timing. Bird Migrations

21 Planetary Migrations Do planets migrate? How? How fast? Are bird & planet migrations similar? Do they migrate long-way or locally? Do they migrate regularly or erraticaly? Do planets migrate alone or in flocks? Where and how do they stop migrating?

22 Migration Type I : embedded in fluid Migration Type II : more in the open (gap)

23 Migration Type I : embedded in fluid Migration Type III partially open (gap) Migration Type II : in the open (gap)

24 Outward migration of protoplanets to ~100AU or outward migration of dust to form rings and spirals required to explain the structure in transitional (5-10 Myr old) dust disks and perheps also the (12-20Myr old) Beta Pictoris-type disks Type III

25 DISK-PLANET interaction and migration, including outward migration It used to be just type I and II... now we study a new mode of migration: type III

26 Migration: type 0 type I type II & IIb type III N-body Timescale of migration: from ~1e2 yr to disk lifetime (~1e7 yr) > 1e4 yr > 1e5 yr > 1e2 - 1e3 yr > 1e5 yr (?) Interaction: Gas drag + Radiation press. Resonant excitation of waves (LR) Tidal excitation of waves (LR) Corotational flows (CR) Gravity ……………………………………………………………………….

27 Shepherding by Prometheus and Pandora Pan opens Encke gap in A-ring of Saturn Planets were thought to always shepherd planets…or was it the other way around?

28 A gap-opening body in a disk: Saturn rings, Keeler gap region (width =35 km) This new 7-km satellite of Saturn was announced in May 2005. To Saturn

29 Prometheus (Cassini view) (Mini-project! Rings as a laboratory to study possible type III migration?)

30 Variable-resolution PPM (Piecewise Parabolic Method) [Artymowicz 1999] Jupiter-mass planet, fixed orbit a=1, e=0. White oval = Roche lobe, radius r_L= 0.07 Corotational region out to x_CR = 0.17 from the planet disk gap (CR region)

31 Type I -- III migration Time-scale (years) Figure From: “Protostars and Planets IV (2000)”; Artymowicz (this talk). type III

32 Simulation of a Jupiter-class planet in a constant surface density disk with soundspeed = 0.05 times Keplerian speed. PPM = Piecewise Parab. Method Artymowicz (2000), resolution 400 x 400 Although this is clearly a type-II situation (gap opens), the migration rate is NOT that of the standard type-II, which is the viscous accretion speed of the nebula.

33 Consider a one-sided disk (inner disk only). The rapid inward migration is OPPOSITE to the expectation based on shepherding (Lindblad resonances). Like in the well-known problem of “sinking satellites” (small satellite galaxies merging with the target disk galaxies), Corotational torques cause rapid inward sinking. (Gas is trasferred from orbits inside the perturber to the outside. To conserve angular momentum, satellite moves in.)

34 Now consider the opposite case of an inner hole in the disk. Unlike in the shepherding case, the planet rapidly migrates outwards. Here, the situation is an inward-outward reflection of the sinking satellite problem. Disk gas traveling on hairpin (half-horeseshoe) orbits fills the inner void and moves the planet out rapidly (type III outward migration). Lindblad resonances produce spiral waves and try to move the planet in, but lose with CR torques.

35 NO MIGRATION: In this frame, comoving with the planet, gas has no systematic radial velocity V = 0, r = a = semi-major axis of orbit. Symmetric horseshoe orbits, torque ~ 0 r a 0 disk Librating Corotational (CR) region Librating Hill sphere (Roche lobe) region x CR protoplanet x CR = half-width of CR region, separatrix distance

36 SLOW MIGRATION: In this frame, comoving with the planet, gas has a systematic radial velocity V = - da/dt = -(planet migr.speed) asymmetric horseshoe orbits, torque ~ da/dt FAST MIGRATION: CR flow on one side of the planet, disk flow on the other Surface densities in the CR region and the disk are, in general, different. Tadpole orbits, maximum torque r r a 0 0 a

37 Saturn-mass protoplanet in a solar nebula disk (1.5 times the Minimum Nebula, PPM, Artymowicz 2003) Type III outward migration Condition for FAST migration: disk mass (in CR region) similar to planet mass. Notice a carrot-shaped bubble of “vacuum” behind the planet. Consisting of material trapped in librating orbits, it produces CR torques smaller than the matrial in front of the planet. The net CR torque powers fast migration. radius 123 Azimuthal angle (0-360 deg)

38

39

40

41 Summary of type-III migration §Extremely rapid (timescale > LRs, disks do not shepherd planets. Requires sufficient disk density §Direction depends on prior history, not just on disk properties. §Supersedes a much slower, standard type-II migration (&type I ??) §Migration stops on disk features (rings, edges and/or substantial density gradients.) Such edges seem natural (dead zone boundaries, magnetospheric inner disk cavities, formation- caused radial disk structure) §Offers possibility of survival of giant exoplanets at intermediate distances (0.1 - 1 AU), §...and of terrestrial planets during the passage of a giant planet on its way to the star (last Mohican scenario) §STRUCTURE in OUTER REGIONS of dusty transitional & debris disks

42 Next Steps: Toward a better LR/CR perturbation theory §Previous perturbation theories started from circular unperturbed orbits [those do not exist] §and assumed infinitesimal perturbations (Fourier decomposition allowed) [not always!] §Alternative way: unperturbed state adjusted for perturbation. Trajectories of all essential types (disk orbits, corotational hairpin/horeseshoes, closed orbits around planet) §On that set of unperturbed flow lines, 1st order perturbation should give a better approximation §Migration and additional effects can be incorporated

43 Animation by Eduardo Delgado Guiding center trajectories in Hill problem Unit of distance = Hill sphere Unit of da/dt = Hill sphere radius per dynamical time

44 Examples of simple orbital sets obtained from the simplification of Hill’s equations of motion.

45 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ stellar companions, flybys

46 Augereau and Papaloizou (2003) Stellar flyby (of an elliptic-obit companion) explains some features of HD 141569A Application of the idea to Beta Pictoris less certain...

47 Quillen et al. (2004) HD 141569A

48 Linear dust prod. Quadratic prod. H/r = 0.05H/r =0.1 LTE Ardila et al (2005) Flyby+planetesimals --> dust production & outflow = 4 M gas = 50 M E

49 Linear dust prod. Quadratic prod. No planet5 MJ, e=0.6 planet Ardila et al (2005) Flyby+plane+planetesimals = 4 H/r = 0.1 M gas = 50 M E

50 Beta = 4 H/r = 0.1 M gas = 50 M E Best model, Ardila et al (2005) HD 141569A 5 M J, e=0.6, a=100 AU planet

51 Room for improvement in theory Wyatt (2005) - planetesimal evolution under seclural perturbation from an eccentric planet, initial time evolution of pericenter glow. 1. No gas drag 2. No dust 3. Planet acts on gas disk to produce spiral waves (in gas and dust) at Lindblad resonances. Ardila et al (2005) 1. Sharp outer edge at 1*pericenter distance of flyby * 2. No pre-existing dust in disk, only the dust produced after perturbation (no time for that?) 3. Single beta value, 4. No dust-dust collisions or avalanches (more than a mini-project?)

52 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ dust migration in gas

53 In the protoplanetary disks (tau  ) dust follows gas. Sharp features due to associated companions: stars, brown dwarfs and planets. These optically thin transitional disks (tau <1) must have some gas even if it's hard to detect. Warning: Dust starts to move w.r.t. gas! Look for outer rings, inner rings, gaps with or without planets. These replenished dust disk are optically thin (tau<<1) and have very little gas. Sub-planetary & planetary bodies can be detected via spectroscopy, spatial distribution of dust, but do not normally expect sharp features. Extensive modeling including dust-dust collisions and radiation pressure needed Planetary systems: stages of decreasing dustiness  Pictoris 1 Myr 5 Myr 12-20 Myr

54

55 Migration: Type 0 §Dusty disks: structure from gas-dust coupling (Takeuchi & Artymowicz 2001) §theory will help determine gas distribution Gas disk tapers off here Predicted dust distribution: axisymmetric ring

56 Radiative blow-out of grains (  -meteoroids, gamma meteoroids) Dust avalanches Radiation pressure on dust grains in disks Neutral (grey) scattering from s> grains Repels ISM dust Disks = Nature, not nurture! Enhanced erosion; shortened dust lifetime Orbits of stable  - meteoroids elliptical Dust migrates, forms axisymmetric rings, gaps (in disks with gas) Short disk lifetime Size spectrum of dust has lower cutoff Weak/no PAH emission Quasi-spiral structure Instabilities (in disks) Age paradox Color effects

57 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ dust blowout avalanches, ■ episodic/local dust release

58 Radiative blow-out of grains (  -meteoroids, gamma meteoroids) Dust avalanches Radiation pressure on dust grains in disks Neutral (grey) scattering from s> grains Repels ISM dust Disks = Nature, not nurture! Enhanced erosion; shortened dust lifetime Orbits of stable  - meteoroids elliptical Dust migrates, forms axisymmetric rings, gaps (in disks with gas) Short disk lifetime Size spectrum of dust has lower cutoff Weak/no PAH emission Quasi-spiral structure Instabilities (in disks) Age paradox Color effects Limit on fir in gas-free disks

59

60 How radiation pressure induces large eccentricity: = F_rad / F_grav

61 Dust Avalanche (Artymowicz 1997) = disk particle, alpha meteoroid ( < 0.5) = sub-blowout debris, beta meteoroid ( > 0.5) Process powered by the energy of stellar radiation N ~ exp ( optical thickness of the disk * ) N

62 For instance, in HD141569A, a prototype transitional disk Transitional disks MUST CONTAIN GAS or face self-destruction. Beta Pic is almost the most dusty, gas-poor disk, possible. * Q abs(V) *Q abs(IR) / (Q abs(V) *Q abs(IR) ) /Q abs (number of sub-blowout debris per collision) (midplane optical thickness)

63 Bimodal histogram of fractional IR luminosity f IR predicted by disk avalanche process

64 source: Inseok Song (2004)

65 ISO/ISOPHOT data on dustiness vs. time Dominik, Decin, Waters, Waelkens (2003) uncorrected ages corrected ages ISOPHOT ages, dot size ~ quality of age ISOPHOT + IRAS f d of beta Pic -1.8

66 f IR =f d disk dustiness OK! Age paradox! Gas-free modeling leads to a paradox ==> gas required or episodic dust production

67 transitional systems 5-10 Myr age

68 Radiative blow-out of grains (  -meteoroids, gamma meteoroids) Dust avalanches Radiation pressure on dust grains in disks Neutral (grey) scattering from s> grains Repels ISM dust Disks = Nature, not nurture! Enhanced erosion; shortened dust lifetime Orbits of stable  - meteoroids are elliptical Dust migrates, forms axisymmetric rings, gaps (in disks with gas) Short disk lifetime Size spectrum of dust has lower cutoff Weak/no PAH emission Quasi-spiral structure Instabilities (in disks) Age paradox Color effects Limit on f IR in gas-free disks

69 Grigorieva, Artymowicz and Thebault (to be subm. to A&A 2005) Comprehensive model of dusty debris disk (3D) with full treatment of collisions and particle dynamics. ■ especially suitable to denser transitional disks supporting dust avalanches ■ detailed treatment of grain-grain colisions, depending on material ■ detailed treatment of radiation pressure and optics, depending on material ■ localized dust injection (e.g., planetesimal collision) ■ dust grains of similar properties and orbits grouped in “superparticles” ■ physics: radiation pressure, gas drag, collisions Results: ■ beta Pictoris avalanches multiply debris x (3-5) ■ spiral shape of the avalanche - a robust outcome ■ strong dependence on material properties and certain other model assumptions

70

71 Model of (simplified) collisional avalanche with substantial gas drag, corresponding to 10 Earth masses of gas in disk

72 Main results of modeling of collisional avalanches: 1. Strongly nonaxisymmetric, growing patterns 2. Substantial exponential multiplication 3. Morphology depends on the amount and distribution of gas, in particular on the presence of an outer initial disk edge

73 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm.) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ ISM ( interstellar wind : gas + dust bombardment ) Artymowicz & Clampin (1997)

74 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ stellar influence: photoevaporation, wind, magnetism

75

76 Radiative blow-out of grains (  -meteoroids, gamma meteoroids) Dust avalanches Radiation pressure on dust grains in disks Neutral (grey) scattering from s> grains Repels ISM dust Disks = Nature, not nurture! Enhanced erosion; shortened dust lifetime Orbits of stable  - meteoroids elliptical Dust migrates, forms axisymmetric rings, gaps (in disks with gas) Short disk lifetime Size spectrum of dust has lower cutoff Weak/no PAH emission Quasi-spiral structure Instabilities (in disks) Age paradox Color effects

77 FEATURES in disks: blobs, clumps ■ streaks, feathers ■ rings (axisymm) ■ rings (off-centered) ■ inner/outer edges ■ disk gaps ■ warps ■ spirals, quasi-spirals ■ tails, extensions ■ ORIGIN: ■ collective effects (e.g., disk selfgravity, radiative instability)

78 In gas+dust disks which are optically thick in the radial direction there may be an interesting set of instabilities. Radiation pressure on a coupled gas+dust system that has a spiral density wave with wave numbers (k,m/r), is analogous in phase and sign to the force or self-gravity. The instability is thus pseudo-gravitational in nature and can be obtained from a WKB local analysis. Forces of selfgravity Forces of radiation pressure in the inertial frame Forces of rad. pressure relative to those on the center of the arm

79 In gas+dust disks which are optically thick in the radial direction there may be an interesting set of instabilities. Radiation pressure on a coupled gas+dust system that has a spiral density wave with wave numbers (k,m/r), is analogous in phase and sign to the force or self-gravity. The instability is thus pseudo-gravitational in nature and can be obtained from a WKB local analysis. effective coefficient for coupled gas+dust r (this profile results from dust migration)

80 Step function of r or constant (WKB) 2

81 Step function of r or constant (WKB) 2

82 r 1 Effective Q number (radiation+selfgravity) Analogies with gravitational instability ==> similar structures (?)

83

84

85 Not only planets but also Gas + dust + radiation => non-axisymmetric features including regular m=1 spirals, conical sectors, and multi-armed wavelets

86 FEATURES in disks:(9) blobs, clumps ■ (5) streaks, feathers ■ (4) rings (axisymm) ■ (2) rings (off-centered) ■ (7) inner/outer edges ■ (5) disk gaps ■ (4) warps ■ (7) spirals, quasi-spirals ■ (8) tails, extensions ■ (6) ORIGIN:(10) ■ instrumental artifacts, variable PSF, noise, deconvolution etc. ■ background/foreground obj. ■ planets (gravity) ■ stellar companions, flybys ■ dust migration in gas ■ dust blowout, avalanches ■ episodic release of dust ■ ISM (interstellar wind) ■ stellar wind, magnetism ■ collective eff. (self-gravity) 48 POSSIBLE CONNECTIONS !

87 While observing: don't try to prove one theory (like, that there MUST BE planets in your still poorly-observed disk. They may be there, but making such a claim requires good evidence.) While modeling: take good care! Don't claim success easily. Your model does NOT fit all the data. Include all relevant physics/dynamics. Use multi-wavelength sets of data to dramatically improve uniqueness of the model.

88

89

90 THE END

91


Download ppt "1. Structures vs. reasons (planets,…) 2. Dust, avalanches, f IR, gas, and the classification of disks 3. HD 141569A as an example 4. Non-axisymmetric features."

Similar presentations


Ads by Google