Download presentation
Presentation is loading. Please wait.
Published byAleesha Stephens Modified over 8 years ago
1
Multimedia Programming 21: Video and its applications Departments of Digital Contents Sang Il Park Lots of Slides are stolen from Alexei Efros, CMU
2
Outline Review: OpenCV Video I/O Video Texture
3
OpenCV Video I/O OpenCV 의 Video Reading Functions CvCapture cvCaptureFromFile cvCaptureFromCAM cvReleaseCapture cvQueryFrame cvGetCaptureProperty cvSetCaptureProperty
4
OpenCV Video I/O OpenCV 의 Video Writing Functions cvCreateVideoWriter cvReleaseVideoWriter cvWriteFrame
5
날씨 예보는 어떻게 할까 ? 일기예보문제 : 오늘의 날씨를 알 때, 내일의 날씨를 알고 싶다 날씨가 오직 {Sunny( 맑음 ), Cloudy( 흐림 ), Raining( 비 )} 만 있다면 … The “Weather Channel” algorithm: 긴 세월 동안 기록해 놓은 것 : – 비 (R) 온 다음날에 얼마나 자주 맑음 (S) 이었나 – 맑은 날 (S) 뒤에 얼마나 자주 자주 맑음 (S) 이었나 –Etc. 각각의 상태에 대해 확률 (%) 를 계산한다. : –P(R|S), P(S|S), etc. 오늘의 날씨에 대비해 내일의 날씨는 이 확률 중 가장 높은 것 ! It’s a Markov Chain
6
Markov Chain 만약 오늘과 어제의 날씨를 알고 있다면 ?
7
문장 합성 [ Shannon,’48] 은 N-gram 을 이용한 ‘ 영어같은 ’ 문장 만드는 법을 개발했다 : Markov model 을 일반화 아주 많은 문서들을 분석하여 N-1 개의 글자가 주어졌을 때 그 뒤에 붙을 수 있는 글자들을 각 각의 글자들의 확률로 계산 첫 글자로 시작하여 Markov chain 을 돌며 확률적으로 선택 글자 단위가 아니라 단어 단위로도 적용 가능 WE NEEDTOEATCAKE
8
Mark V. Shaney (Bell Labs) Results ( alt.singles 의 글들로 훈련 ): “One morning I shot an elephant in my arms and kissed him.” “I spent an interesting evening recently with a grain of salt” 개그 콘서트의 “ 애드리부라더스 ” 와 비슷
9
Video Textures Arno Schödl Richard Szeliski David Salesin Irfan Essa Microsoft Research, Georgia Tech
10
Still photos
11
Video clips
12
Video textures
13
Problem statement video clipvideo texture
14
Our approach How do we find good transitions?
15
Finding good transitions Compute L 2 distance D i, j between all frames Similar frames make good transitions frame ivs. frame j
16
Markov chain representation Similar frames make good transitions
17
Transition costs Transition from i to j if successor of i is similar to j Cost function: C i j = D i+1, j
18
Transition probabilities Probability for transition P i j inversely related to cost: P i j ~ exp ( – C i j / 2 ) high low
19
Preserving dynamics
21
Cost for transition i j C i j = w k D i+k+1, j+k
22
Preserving dynamics – effect Cost for transition i j C i j = w k D i+k+1, j+k
23
Dead ends No good transition at the end of sequence
24
Future cost Propagate future transition costs backward Iteratively compute new cost F i j = C i j + min k F j k
25
Future cost Propagate future transition costs backward Iteratively compute new cost F i j = C i j + min k F j k
26
Future cost Propagate future transition costs backward Iteratively compute new cost F i j = C i j + min k F j k
27
Future cost Propagate future transition costs backward Iteratively compute new cost F i j = C i j + min k F j k
28
Propagate future transition costs backward Iteratively compute new cost F i j = C i j + min k F j k Q-learning Future cost
29
Future cost – effect
30
Finding good loops Alternative to random transitions Precompute set of loops up front
31
Visual discontinuities Problem: Visible “Jumps”
32
Crossfading Solution: Crossfade from one sequence to the other.
33
Morphing Interpolation task:
34
Morphing Interpolation task: Compute correspondence between pixels of all frames
35
Morphing Interpolation task: Compute correspondence between pixels of all frames Interpolate pixel position and color in morphed frame based on [Shum 2000]
36
Results – crossfading/morphing
37
Jump Cut Crossfade Morph
38
Crossfading
39
Frequent jump & crossfading
40
Video portrait Useful for web pages
41
Combine with IBR techniques Video portrait – 3D
42
Region-based analysis Divide video up into regions Generate a video texture for each region
43
Automatic region analysis
44
User selects target frame range User-controlled video textures slowvariablefast
45
Lengthen / shorten video without affecting speed Time warping shorteroriginallonger
46
Video-based animation Like sprites computer games Extract sprites from real video Interactively control desired motion ©1985 Nintendo of America Inc.
47
Video sprite extraction
48
Video sprite control Augmented transition cost:
49
Video sprite control Need future cost computation Precompute future costs for a few angles. Switch between precomputed angles according to user input [GIT-GVU-00-11]
50
Interactive fish
51
Summary Video clips video textures define Markov process preserve dynamics avoid dead-ends disguise visual discontinuities
52
Summary Extensions regions external constraints video-based animation
53
Discussion Some things are relatively easy
54
Discussion Some are hard
55
A final example
Similar presentations
© 2025 SlidePlayer.com. Inc.
All rights reserved.